

Class: XIth
Date:

Subject: MATHS
DPP No.: 3

Topic:- sets

			ernarinarinarinarinarinarinary		
1. If A and B are two given sets, then $A \cap (A \cap B)^c$ is equal to					
	a) A	b) <i>B</i>	c) Ф	$d)A \cap B^c$	
2.	If a set has 13 elements and R is a reflexive relation on A with n elements, then				
	a) $13 \le n \le 26$	b) $0 \le n \le 26$	c) $13 \le n \le 169$	d) $0 \le n \le 169$	
3.	Let <i>X</i> be the set of all	engineering colleges in a	state of Indian Republic	and R be a relation on X	
defined as two colleges are related iff they are affiliated to the same university, then <i>R</i> is					
	a) Only reflexive	b) Only symmetric	c) Only transitive	d) Equivalence	
4.	In the above question	n, the number of families	which buy none of <i>A</i> , <i>B</i> a	$\operatorname{nd} C$ is	
	a) 4000	b) 3300	c) 4200	d) 5000	
5.	If A and B are two sets, then $A \cap (A \cup B)$ equals				
	a) A	b) <i>B</i>	с) ф	d) None of th <mark>ese</mark>	
6.	If $A = \{1,3,5,7,9,11,13,15,17\}$, $B = \{2,4,18\}$ and N is the universal set, then $A' \cup ((A \cup B) \cap A)$				
B') is					
	a) A	b) <i>N</i>	c) <i>B</i>	d) none of these	
7.	If $A = \{\phi, \{\phi\}\}\$, then t	the power set of A is			
	a) A	b) {φ, {φ}, <i>A</i> }	c) {φ, {φ}, {{φ}}}, <i>A</i> }	d) None of these	
8.	I at A ((a) a)	· X · · · C D)			
8. Let $A = \{(x, y): y = e^{-x}, x \in R\}$, $B = \{(x, y): y = e^{-x}, x \in R\}. \text{ Then,}$ a) $A \cap B = \emptyset$ b) $A \cap B \neq \emptyset$ c) $A \cup B = R^2$ d) None of these					
	a) $A \cap B = \phi$	b) $A \cap B \neq \emptyset$	c) $A \cup B = R^2$	d) None of these	
9.	Let <i>L</i> denote the set of	of all straight lines in a pla	ane. Let a relation R be d	efined by $\alpha R \beta \Leftrightarrow \alpha \perp$	
$\beta, \alpha, \beta \in L$. Then R is					
	a) Reflexive	b) Symmetric	c) Transitive	d) None of these	
10.	If A, B and C are three	e sets such that $A \cap B = A$	$A \cap C$ and $A \cup B = A \cup C$,		
		b) $B = C$		d)A = B	
11. Let $S = \{1, 2, 3, 4\}$. The total number of unordered pairs of disjoint subsets of S is equal to					
	a) 25	b) 34	c) 42	d)41	
12.	If $A = \{(x, y) : x^2 + (x, y) : x^2 + (x, y) : x^2 + (x, y) : x \in A $	$y^2 = 4; x, y \in R$ and	1		
$B = \{(x, y): x^2 + y^2 = 9; x, y \in R\}, \text{ then }$					
	a) $A - B = \phi$		c) $A \cap B \neq \emptyset$	$d)A \cap B = A$	
13. Let $n(\mathcal{U}) = 700$, $n(A) = 200$, $n(B) = 300$ and $n(A \cap B) = 100$. Then, $n(A^c \cap B^c) =$					
	a) 400	b) 600	c) 300	d) 200	
14.	If $A = \{\theta : \cos \theta > $	$\rightarrow -\frac{1}{2}$, $0 \le \theta \le \pi$ and			
$B = \left\{\theta : \sin \theta > \frac{1}{2}, \frac{\pi}{3} \le \theta \le \pi\right\}$, then					
	a) $A \cap B = \{\theta : \pi/3 \le \theta \le 2\pi/3\}$				

- b) $A \cap B = \{\theta : -\pi/3 \le \theta \le 2\pi/3\}$
- c) $A \cup B = \{\theta : -5\pi/6 \le \theta \le 5\pi/6\}$
- $d)A \cup B = \{\theta : 0 \le \theta \le \pi/6\}$
- 15. In a set of ants in a locality, two ants are said to be related iff they walk on a same straight line, then the relation is
 - a) Reflexive and symmetric
 - b) Symmetric and transitive
 - c) Reflexive and transitive
 - d) Equivalence
- 16. If $A = \{1, 2, 3\}, B = \{a, b\}$, then $A \times B$ mapped A to B is
 - a) $\{(1,a),(2,b),(3,b)\}$

b) $\{(1,b),(2,a)\}$

c) $\{(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)\}$

 $d)\{(1,a),(2,a),(2,b),(3,b)\}$

17. If A_n is the set of first n prime numbers, then $\bigcup_{n=2}^{10} A_n =$

a) {2,3,5,7,11,13,17,19} b) {2,3,5,7,11,13,17,19,23,29}

c) {3,5} d) {2,3}

- 18. If $A = \{4, 6, 10, 12\}$ and R is a relation defined on A as "two elements are related iff they have exactly one common factor other than 1". Then the relation R is
 - a) Antisymmetric
- b) Only transitive
- c) Only symmetric
- d) Equivalence
- 19. If *R* is a relation from a set *A* to a set *B* and *S* is a relation from *B* to a set *C*, then the relation *SoR*
 - a) Is from A to C
- b) Is from C to A
- c) Does not exist
- d) None of these
- 20. Let n be a fixed positive integer. Define a relation R on the set Z of integers by, $a R b \Leftrightarrow n \mid a b$. Then, R is not
 - a) Reflexive
- b) Symmetric
- c) Transitive
- d) None of these

ACADEMY

Learning Without Limits

Since 2010