SESSION: 2025-26

CLASS: XIIth

DATE:

SOLUTIONS

SUBJECT: MATHS DPP NO.: 1

Topic:- CONTINUITY AND DIFFERENTIABILITY

1 (b)

We have.

$$-\pi/4 < x < \pi/4$$

$$\Rightarrow -1 < \tan x < 1 \Rightarrow 0 \le \tan^2 x < 1 \Rightarrow [\tan^2 x] = 0$$

$$f(x) = [\tan^2 x] = 0 \text{ for all } x \in (-\pi/4, \pi/4)$$

Thus, f(x) is a constant function on $\in (-\pi/4, \pi/4)$

So, it is continuous on $\in (-\pi/4, \pi/4)$ and f'(x) = 0 for all $x \in (-\pi/4, \pi/4)$

(d)

Since, f(x) is continuous at x = 0

$$\lim_{x \to 0} f(x) = f(0)$$

$$\Rightarrow \lim_{x \to 0} \frac{-e^x + 2^x}{x} = f(0)$$

$$\lim_{x \to 0} f(x) = f(0)$$

$$\Rightarrow \lim_{x \to 0} \frac{-e^x + 2^x}{x} = f(0)$$

$$\Rightarrow \lim_{x \to 0} \frac{-e^x + 2^x \log 2}{1} = f(0) \quad \text{[by L 'Hospital's rule]} \quad \text{(both Limits)}$$

$$\Rightarrow f(0) = -1 + \log 2$$

(b) 3

Since f(x) is an even function

$$\therefore f(-x) = f(x) \text{ for all } x$$

$$\Rightarrow -f'(-x) = f'(x)$$
 for all x

$$\Rightarrow f'(-x) = -f'(x)$$
 for all x

$$\Rightarrow$$
 $f'(x)$ is an odd function

(c)

We have,

$$f(x) = \begin{cases} [\cos \pi \, x], x < 1 \\ |x - 2|, 1 \le x < 2 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} 2 - x, & 1 \le x < 2 \\ -1, & 1/2 < x < 1 \\ 0, & 0 < x \le 1/2 \\ 1, & x = 0 \\ 0, & -1/2 \le x < 0 \\ -1, & -3/2 < x < -1/2 \end{cases}$$

It is evident from the definition that f(x) is discontinuous at x = 1/2

5 (b)

$$\lim_{x \to 2^{-}} f(x) = \lim_{h \to 0} f(2 - h) = \lim_{h \to 0} \frac{|-2 - h + 2|}{\tan^{-1}(-2 - h + 2)}$$

$$\Rightarrow \lim_{x \to 2^{-}} f(x) = \lim_{h \to 0} \frac{h}{\tan^{-1}(-h)} = \lim_{h \to 0} \frac{-h}{\tan^{-1}h} = -1$$

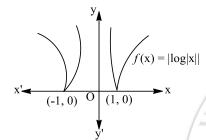
and,

$$\lim_{x \to -2^+} f(x) = \lim_{h \to 0} f(-2+h) = \lim_{h \to 0} \frac{|-2+h+2|}{\tan^{-1}(-2+h+2)}$$

$$\Rightarrow \lim_{x \to -2^+} f(x) = \lim_{h \to 0} \frac{h}{\tan^{-1} h} = 1$$

$$\therefore \lim_{x \to -2^{-}} f(x) \neq \lim_{x \to -2^{+}} f(x)$$

So, f(x) is neither continuous nor differentiable at x = -2



From the graph of $f(x) = |\log|x||$ it is clear that f(x) is everywhere continuous but not differentiable at $x = \pm 1$, due to sharp edge

We have.

$$\lim_{x \to a} \frac{xf(a) - a f(x)}{x - a} = \lim_{x \to a} \frac{x f(a) - a f(a) - a (f(x) - f(a))}{x - a}$$

$$\Rightarrow \lim_{x \to a} \frac{x f(a) - a f(x)}{x - a} = \lim_{x \to a} \frac{f(a)(x - a)}{x - a} - a \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

$$\Rightarrow \lim_{x \to a} \frac{x f(a) - a f(x)}{x - a} = \lim_{x \to a} \frac{f(a)(x - a)}{x - a} - a \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

$$\Rightarrow \lim_{x \to a} \frac{x f(a) - a f(x)}{x - a} = f(a) - a f'(a) = 4 - 2a$$

Given, $f(x) = x(\sqrt{x} + \sqrt{x+1})$. At x = 0 LHL of \sqrt{x} is not defined, therefore it is not continuous at

Hence, it is not differentiable at x = 0

Here,
$$f'(x) = \begin{cases} 2ax, & b \neq 0, x \leq 1 \\ 2bx + a, & x > 1 \end{cases}$$

Since, f(X) is continuous at x = 1

$$\therefore \lim_{h \to 0} f(x) = \lim_{h \to 1^+} f(x)$$

$$\Rightarrow a+b=b+a+c \Rightarrow c=0$$

Also, f(x) is differentiable at x = 1

$$\therefore (LHD \text{ at } x = 1) = (RHD \text{ at } x = 1)$$

$$\Rightarrow 2a = 2b(1) + a \Rightarrow a = 2b$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \left\{ \frac{x^{2}}{4} - \frac{3x}{4} + \frac{13}{4} \right\} = \frac{1}{4} - \frac{3}{2} + \frac{13}{4} = 2$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1} |x - 3| = 2$$

and,
$$f(1) = |1 - 3| = 2$$

$$\therefore \lim_{x \to 1^{-}} f(x) = f(1) = \lim_{x \to 1^{+}} f(x)$$

So, f(x) is continuous at x = 1

We have,

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3} |x - 3| = 0, \lim_{x \to 3^{+}} f(x) = \lim_{x \to 3} |x - 3| = 0$$

and,
$$f(3) = 0$$

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = f(3)$$

So, f(x) is continuous at x = 3

Now,

(LHD at
$$x = 1$$
)

(LHD at
$$x = 1$$
)
$$= \left\{ \frac{d}{dx} \left(\frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4} \right) \right\}_{x=1} = \left\{ \frac{x}{2} - \frac{3}{2} \right\}_{x=1} = \frac{1}{2} - \frac{3}{2} = -1$$

(RHD at
$$x = 1$$
) = $\left\{ \frac{d}{dx} \left(-(x - 3) \right) \right\}_{x=1} = -1$

$$\therefore (LHD \text{ at } x = 1) = (RHD \text{ at } x = 1)$$

So, f(x) is differentiable at x = 1

(d) 11

(d)
$$(2\sin x - \sin 2x)$$
 ACADEM

$$f(x) = \begin{cases} \frac{2\sin x - \sin 2x}{2x\cos x}, & \text{if } x \neq 0, \\ a, & \text{if } x = 0 \end{cases}$$

Now,
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{2 \sin x - \sin 2x}{2x \cos x}$$
 $\left(\frac{0}{0} \text{ form}\right)$
= $\lim_{x \to 0} \frac{2 \cos x - 2 \cos 2x}{2x \cos x}$

$$= \lim_{x \to 0} \frac{2\cos x - 2\cos 2x}{2(\cos x - x\sin x)}$$

$$= \lim_{x \to 0} \frac{2-2}{2(1-0)} = 0$$

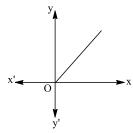
Since, f(x) is continuous at x = 0

$$f(0) = \lim_{x \to 0} f(x)$$

$$\Rightarrow a = 0$$

Given,
$$f(x) = x + |x|$$

$$f(x) = \begin{cases} 2x, & x \ge 0 \\ 0, & x < 0 \end{cases}$$



It is clear from the graph of f(x) is continuous for every value of x

Alternate

Since, x and |x| is continuous for every value of x, so their sum is also continuous for every value of x

Since f(x) is continuous at x = 0

$$\lim_{x \to 0^-} f(x) = f(0) = \lim_{x \to 0^+} f(x)$$

$$\lim_{x \to 0^{-}} f(x) = f(0) = \lim_{x \to 0^{+}} f(x)
\Rightarrow \lim_{x \to 0} \{1 + |\sin x|\}^{\frac{a}{|\sin x|}} = b = \lim_{x \to 0} e^{\frac{\tan 2x}{\tan 3x}}$$

$$\Rightarrow e^a = b = e^{2/3} \Rightarrow a = \frac{2}{3} \text{ and } a = \log_e b$$

14

We have.

$$f(x) = \begin{cases} x^2 + \frac{(x^2/1 + x^2)}{1 - (1/1 + x^2)} = x^2 + 1, x \neq 0 \\ 0, & x = 0 \end{cases}$$
Clearly, $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = 1 \neq f(0)$

Clearly,
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = 1 \neq f(0)$$

So, f(x) is discontinuous at x = 0

15

LHD=
$$\lim_{h\to 0} \frac{f(0-h)-f(0)}{-h}$$

$$= \lim_{h \to 0} \frac{1 - 1}{-h} = 0$$

RHD=
$$\lim_{h\to 0} \frac{f(0+h)-f(0)}{h}$$

$$= \lim_{h \to 0} \frac{1 + \sin(0+h) - 1}{h} = \lim_{h \to 0} \frac{\sin h}{h} = 1$$

16 (a)

Given,
$$f(x) = x - |x - x^2|$$

At
$$x = 1$$
, $f(1) = 1 - |1 - 1| = 1$

$$\lim_{x \to 1^{-1}} f(x) = \lim_{h \to 0} [(1 - h) - |(1 - h) - (1 - h)^{2}|]$$

$$= \lim_{h \to 0} \left[(1 - h) - |h - h^2| \right] = 1$$

$$\lim_{x \to 1^+} f(x) = \lim_{h \to 0} [(1+h) - |(1+h) - (1+h)^2|]$$

$$= \lim_{h \to 0} [1 + h - |-h^2 - h|] = 1$$

$$\lim_{x \to 1^{-1}} f(x) = \lim_{x \to 1^{+}} = f(1)$$

17 (a) We have.

$$f(x + y + z) = f(x)f(y)f(z) \text{ for all } x, y, z \quad ...(i)$$

$$\Rightarrow f(0) = f(0)f(0)f(0) \quad [Putting x = y = z = 0]$$

$$\Rightarrow f(0)\{1-f(0)^2\}=0$$

$$\Rightarrow f(0) = 1$$
 [: $f(0) = 0 \Rightarrow f(x) = 0$ for all x]

Putting z = 0 and y = 2 in (i), we get

$$f(x + 2) = f(x)f(2)f(0)$$

$$\Rightarrow f(x+2) = 4f(x)$$
 for all x

$$\Rightarrow f'(2) = 4f'(0)$$
 [Putting $x = 0$]

$$\Rightarrow f'(2) = 4 \times 3 = 12$$

18 (b)

For x > 1, we have

$$f(x) = |\log|x|| = \log x \quad \Rightarrow \quad f'(x) = \frac{1}{x}$$

For x < -1, we have

$$f(x) = |\log|x|| = \log(-x) \quad \Rightarrow \quad f'(x) = \frac{1}{x}$$

For 0 < x < 1, we have

$$f(x) = |\log|x|| = -\log x \quad \Rightarrow \quad f'(x) = \frac{-1}{x}$$

For $-1 < x < 0$, we have

$$f(x) = -\log(-x) \implies f'(x) = -\frac{1}{x}$$

Hence,
$$f'(x) = \begin{cases} \frac{1}{x}, & |x| > 1\\ -\frac{1}{x}, & |x| < 1 \end{cases}$$

19

Since,
$$\lim_{x \to 0} f(x) = f(0)$$

$$\Rightarrow \lim_{x \to 0} \frac{1 - \cos x}{x^2} = k$$

$$\Rightarrow \lim_{x \to 0} \frac{x^{-1}}{x^{-1}} = k \quad \text{[using L 'Hospital's rule]}$$

$$\Rightarrow \frac{1}{2} \lim_{x \to 0} \frac{\sin x}{x} = k \quad \Rightarrow \quad k = \frac{1}{2}$$

Given,
$$f(X) = |x - 1| + |x - 2|$$

$$= \begin{cases} x - 1 + x - 2, & x \ge 2 \\ x - 1 + 2 - x, & 1 \le x < 2 \\ 1 - x + 2 - x, & x < 1 \end{cases}$$

$$= \begin{cases} 2x - 3, & x \ge 2 \\ 1, & 1 \le x < 2 \end{cases}$$

$$\begin{pmatrix} 3 - 2x, & x < 1 \end{pmatrix}$$

$$f'(x) = \begin{cases} 2, & x > 2 \\ 0, & 1 < x < 2 \\ -1, & x < 1 \end{cases}$$

Hence, except x = 1 and x = 2, f(x) is differentiable everywhere in R

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	D	В	С	В	В	В	С	A	D
Q.	11	12	13	14	15	16	17	18	19	20
A.	D	A	A	В	D	A	A	В	С	В

SESSION: 2025-26

CLASS: XIIth

DATE:

SOLUTIONS

SUBJECT: MATHS

DPP NO.: 2

Topic: - CONTINUITY AND DIFFERENTIABILITY

Clearly, f(x) is differentiable for all non-zero values of x. For $x \neq 0$, we have

$$f'(x) = \frac{x e^{-x^2}}{\sqrt{1 - e^{-x^2}}}$$

Now.

(LHD at
$$x = 0$$
) = $\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{h \to 0} \frac{f(0 - h) - f(0)}{x - 0}$

Now,
(LHD at
$$x = 0$$
) = $\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{h \to 0} \frac{f(0 - h) - f(0)}{x - 0}$
 \Rightarrow (LHD at $x = 0$) = $\lim_{h \to 0} \frac{\sqrt{1 - e^{-h^2}}}{-h} = \lim_{h \to 0} -\frac{\sqrt{1 - e^{-h^2}}}{h}$

$$\Rightarrow$$
 (LHD at $x = 0$) = $-\lim_{h \to 0} \sqrt{\frac{e^{h^2} - 1}{h^2}} \times \frac{1}{\sqrt{e^{h^2}}} = -1$

and, (RHD at
$$x = 0$$
) = $\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{h \to 0} \frac{\sqrt{1 - e^{-h^2}} - 0}{h}$

$$\Rightarrow$$
 (RHD at $x = 0$) = $\lim_{h \to 0} \sqrt{\frac{e^{h^2} - 1}{h^2}} \times \frac{1}{\sqrt{e^{h^2}}} = 1$

So, f(x) is not differentiable at x = 0

Hence, the set of points of differentiability of f(x) is $(-\infty, 0) \cup (0, \infty)$

2 (c)

Since f(x) is continuous at x = 0

$$\therefore f(0) = \lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0$$

For f(x) to be continuous everywhere, we must have,

$$f(0) = \lim_{x \to 0} f(x)$$

$$\Rightarrow f(0) = \lim_{x \to 0} \frac{2 - (256 - 7x)^{1/8}}{(5x + 32)^{1/5} - 2} \quad \left[\text{Form} \frac{0}{0} \right]$$

$$\Rightarrow f(0) = \lim_{x \to 0} \frac{\frac{7}{8}(256 - 7x)^{-\frac{7}{8}}}{(5x + 32)^{-4/5}} = \frac{7}{8} \times \frac{2^{-7}}{2^{-4}} = \frac{7}{64}$$

$$f(x) = |x|^3 = \begin{cases} x^3, & x \ge 0 \\ -x^3, & x < 0 \end{cases}$$

$$\therefore \text{ (LHD at } x = 0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} -\frac{x^{3}}{x} = 0$$

and,

$$\therefore \text{ (RHD at } x = 0) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^3}{x} = 0$$

Clearly, (LHD at x = 0) = (RHD at x = 0)

Hence, f(x) is differentiable at x = 0 and its derivative at x = 0 is 0

5 **(a**)

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \left(\frac{4^x - 1}{x} \right)^3 \times \frac{\left(\frac{x}{a} \right)}{\sin\left(\frac{x}{a} \right)} \cdot \frac{ax^2}{\log\left(1 + \frac{1}{3}x^2 \right)}$$

$$= (\log 4)^3 \cdot 1 \cdot a \lim_{x \to 0} \left(\frac{x^2}{\frac{1}{3}x^2 - \frac{1}{18}x^4 + \dots} \right)$$

$$= 3a (\log 4)^3$$

$$\lim_{x\to 0} f(x) = f(0)$$

$$\Rightarrow 3a (\log 4)^3 = 9(\log 4)^3$$

$$\Rightarrow$$
 $a = 3$

We have,

$$f(x) = |[x]x| \text{ for } -1 < x \le 2$$

$$\Rightarrow f(x) = \begin{cases} -x, & -1 < x < 0 \\ 0, & 0 \le x < 1 \\ x, & 1 \le x < 2 \\ 2x, & x = 2 \end{cases}$$

It is evident from the graph of this function that it is continuous but not differentiable at x=0. Also, it is discontinuous at x=1 and non-differentiable at x=2

7 **(c**)

Given,
$$f(x) = [x^3 - 3]$$

Let $g(x) = x^3 - x$ it is in increasing function

$$g(1) = 1 - 3 = -2$$

and
$$g(2) = 8 - 3 = 5$$

Here, f(x) is discontinuous at six points

8 **(b**

Given,
$$y = \cos^{-1} \cos(x - 1)$$
, $x > 0$

$$\Rightarrow \quad y = x - 1, \qquad 0 \le x - 1 \le \pi$$

$$\therefore y = x - 1, \qquad 1 \le x \le \pi + 1$$

At
$$x = \frac{5\pi}{4} \in [1, \pi + 1]$$

$$\Rightarrow \frac{dy}{dx} = 1 \quad \Rightarrow \quad \left(\frac{dy}{dx}\right)_{x = \frac{5\pi}{d}} = 1$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x) + f(h) - f(x)}{h} \quad [\because f(x+y) = f(x) + f(y)]$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(h)}{h} = \lim_{h \to 0} \frac{h^2 g(h)}{h}$$

$$\Rightarrow f'(x) = 0 \times g(0) = 0 \quad \left[\because g \text{ is continuous} \atop \therefore \lim_{h \to 0} g(h) = g(0) \right]$$

10 **(b)**

Using Heine's definition of continuity, it can be shown that f(x) is everywhere discontinuous

11 **(b)**

For $x \neq -1$, we have

$$f(x) = 1 - 2x + 3x^2 - 4x^3 + \dots \infty$$

$$\Rightarrow f(x) = (1+x)^{-2} = \frac{1}{(1+x)^2}$$

Thus, we have

$$f(x) = \begin{cases} \frac{1}{(1+x)^2}, & x \neq -1\\ 1, & x = -1 \end{cases}$$
We have $\lim_{x \to \infty} f(x) \to \infty$ and $\lim_{x \to \infty} f(x) \to \infty$ and $\lim_{x \to \infty} f(x) \to \infty$

We have,
$$\lim_{x \to -1^-} f(x) \to \infty$$
 and $\lim_{x \to -1^-} f(x) \to \infty$

So,
$$f(x)$$
 is not continuous at $x = -1$

Consequently, it is not differentiable there at

At
$$x = a$$
,

$$LHL = \lim_{x \to a^{-}} f(x) = \lim_{x \to a} 2a - x = a$$

And RHL=
$$\lim_{x \to a^+} f(x) = \lim_{x \to a} 3x - 2a = a$$

And
$$f(a) = 3(a) - 2a = a$$

$$\therefore$$
 LHL=RHL= $f(a)$

Hence, it is continuous at x = a

Again, at
$$x = a$$

$$LHD = \lim_{h \to 0} \frac{f(a-h) - f(a)}{-h}$$

$$= \lim_{h \to 0} \frac{2a - (a - h) - a}{-h} = -1$$

and RHD=
$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$$

$$= \lim_{h \to 0} \frac{3(a+h) - 2a - a}{h} = 3$$

∴ LHD≠RHD

Hence, it is not differentiable at x = a

13 **(b)**

We have,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - 1}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{1 + (\sin 2h)g(h) - 1}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{\sin 2h}{h} \times \lim_{h \to 0} g(h) = 2f(x)g(0)$$

If $-1 \le x \le 1$, then $0 \le x \sin \pi x \le 1/2$

$$f(x) = [x \sin \pi x] = 0, \text{ for } -1 \le x \le 1$$

If 1 < x < 1 + h, where h is a small positive real number, then

$$\pi < \pi \ x < \pi + \pi \ h \Rightarrow -1 < \sin \pi \ x < 0 \Rightarrow -1 < x \sin \pi \ x < 0$$

$$f(x) = [x \sin \pi x] = -1 \text{ in the right neighbourhood of } x = 1$$

Thus, f(x) is constant and equal to zero in [-1, 1] and so f(x) is differentiable and hence continuous on (-1,1)

At x = 1, f(x) is discontinuous because

$$\Rightarrow \lim_{x \to 1^{-}} f(x) = 0 \text{ and } \lim_{x \to 1^{+}} f(x) = -1$$

Learning Without Limits

Hence, f(x) is not differentiable at x = 1

We have,

(LHD at
$$x = 0$$
) = $\left\{ \frac{d}{dx} (1) \right\}_{x=0} = 0$

(RHD at
$$x = 0$$
) = $\left\{ \frac{d}{dx} (1 + \sin x) \right\}_{x=0} = \cos 0 = 1$

Hence, f'(x) at x = 0 does not exist

Here,
$$f'(x) = \begin{cases} 2bx + a, & x \ge -1 \\ 2a, & x < -1 \end{cases}$$

Given, f'(x) is continuous everywhere

$$\therefore \quad \lim_{x \to -1^+} f(x) = \lim_{x \to -1^-} f(x)$$

$$\Rightarrow$$
 $-2b + a = -2a$

$$\Rightarrow$$
 3 $a = 2b$

$$\Rightarrow$$
 $a = 2$, $b = 3$

or
$$a = -2$$
, $b = -3$

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\log \cos x}{\log(1 + x^2)}$$

$$\Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\log(1 - 1 + \cos x)}{\log(1 + x^2)} \cdot \frac{1 - \cos x}{1 - \cos x}$$

$$\Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\log\{1 - (1 - \cos x)\}}{1 - \cos x} \cdot \frac{1 - \cos x}{\log(1 + x^2)}$$

$$\Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = -\lim_{x \to 0} \log \frac{[1 - (1 - \cos x)]}{-(1 - \cos x)} \times \frac{2 \sin^2 \frac{x}{2}}{4 \left(\frac{x}{2}\right)^2} \times \frac{x^2}{\log(1 + x^2)}$$

$$\Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = -\frac{1}{2}$$

Hence, f(x) is differentiable and hence continuous at x = 0

Since f(x) is continuous at x = 1. Therefore, $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x)$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) \Rightarrow A - B = 3 \Rightarrow A = 3 + B \quad ...(i)$$

If f(x) is continuous at x = 2, then

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) \Rightarrow 6 = 4 B - A \quad ...(ii)$$

Solving (i) and (ii) we get B = 3

As f(x) is not continuous at x = 2. Therefore, $B \neq 3$

Hence, A = 3 + B and $B \neq 3$

19 (a)

We have,

$$f(x) = \begin{cases} x - 4, & x \ge 4 \\ -(x - 4), & 1 \le x < 4 \\ (x^3/2) - x^2 + 3x + (1/2), & x < 1 \end{cases}$$

Clearly, f(x) is continuous for all x but it is not differentiable at x = 1 and x = 4

It is given that f(x) is continuous at x = 1

$$\therefore \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$$

$$\Rightarrow \lim_{x \to 1^{-}} a[x+1] + b[x-1] = \lim_{x \to 1^{+}} a[x+1] + b[x-1]$$

$$\Rightarrow a - b = 2a + 0 \times b$$

$$\Rightarrow a + b = 0$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	С	D	В	A	D	С	В	D	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	В	В	С	D	С	В	A	A	A

DPP
DAILY PRACTICE PROBLEMS

SESSION: 2025-26

CLASS: XIIth

DATE:

(c)

 $\Rightarrow f'(x) = 0 \text{ for all } x$ 5 **(d)**

We have,

SOLUTIONS

SUBJECT: MATHS DPP NO.: 3

Topic:- CONTINUITY AND DIFFERENTIABILITY

$$\lim_{x\to 0^{+}} f(x) = \lim_{x\to 0^{+}} \lambda[x] = 0$$

$$\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{-}} 5^{1/x} = 0$$
And $f(0) = \lambda[0] = 0$

$$f \text{ is continuous only whatever } \lambda \text{ may be}$$

$$\frac{1}{2} \text{ (b)}$$
We have,
$$y(x) = f(e^{x}) e^{f(x)}$$

$$\Rightarrow y'(x) = f'(e^{x}) e^{x} \cdot e^{x} \cdot e^{f(x)} + f(e^{x}) e^{f(x)} f'(x)$$

$$\Rightarrow y'(0) = f'(1)e^{f(0)} + f(1)e^{f(0)} f'(0)$$

$$\Rightarrow y'(0) = 2 \quad [\because f(0) = f(1) = 0, f'(1) = 2]$$

$$\frac{1}{3} \text{ (b)}$$
Since $f(x)$ is differentiable at $x = 1$. Therefore,
$$\lim_{x\to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x\to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$

$$\Rightarrow \lim_{h\to 0} \frac{f(1-h) - f(1)}{-h} = \lim_{h\to 0} \frac{f(1+h) - f(1)}{h}$$

$$\Rightarrow \lim_{h\to 0} \frac{a(1-h)^{2} - b - 1}{-h} = \lim_{h\to 0} \frac{f(1+h) - f(1)}{h}$$

$$\Rightarrow \lim_{h\to 0} \frac{(a-b-1) - 2 ah + ah^{2}}{-h} = \lim_{h\to 0} \frac{-h}{h(1+h)}$$

$$\Rightarrow \lim_{h\to 0} \frac{-(a-b-1) - 2 ah - ah^{2}}{h} = -1$$

$$\Rightarrow -(a-b-1) = 0 \text{ and so } \lim_{h\to 0} \frac{2ah - ah^{2}}{h} = -1$$

$$\Rightarrow a - b - 1 = 0 \text{ and } 2a = -1 \Rightarrow a = -\frac{1}{2}, b = -\frac{3}{2}$$
4 (c)
We have,
$$f(x) = \frac{\sin 4 \pi[x]}{1 + [x]^{2}} = 0 \text{ for all } x \text{ [} \because 4\pi[x] \text{ is a multiple of } \pi\text{]}$$

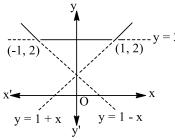
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \sin \frac{1}{x}$$

 $\Rightarrow \lim_{x\to 0} f(x) = \text{An oscillating number which oscillates between } -1 \text{ and } 1$

Hence, $\lim_{x\to 0} f(x)$ does not exist

Consequently, f(x) cannot be continuous at x = 0 for any value of k

6 **(c**)



It is clear from the graph that f(x) is continuous everywhere and also differentiable everywhere except $\{-1,1\}$ due to sharp edge

We have,

$$\log\left(\frac{x}{y}\right) = \log x - \log y$$
 and $\log(e) = 1$

$$\therefore f(x) = \log x$$

Clearly, f(x) is unbounded because $f(x) \to -\infty$ as $x \to 0$ and $f(x) \to +\infty$ as $x \to \infty$ We have,

$$f\left(\frac{1}{r}\right) = \log\left(\frac{1}{r}\right) = -\log x$$

As
$$x \to 0$$
, $f\left(\frac{1}{x}\right) \to \infty$

Learning Without Lim

Also.

$$\lim_{x \to 0} x f(x) = \lim_{x \to 0} x \log x = \lim_{x \to 0} \frac{\log x}{1/x}$$

$$\Rightarrow \lim_{x \to 0} x f(x) = \lim_{x \to 0} \frac{1/x}{-1/x^2} = -\lim_{x \to 0} x = 0$$

Since g(x) is the inverse of f(x). Therefore,

fog(x) = x, for all x

$$\Rightarrow \frac{d}{dx} \{ fog(x) \} = 1, \text{ for all } x$$

$$\Rightarrow f'(g(x))g'(x) = 1$$
, for all x

$$\Rightarrow \frac{1}{1 + \{g(x)\}^3} \times g'(x) = 1 \text{ for all } x \qquad \left[\because f'(x) = \frac{1}{1 + x^3} \right]$$

$$\Rightarrow g'(x) = 1 + \{g(x)\}^3$$
, for all x

10 **(d)**

We have.

$$f(x) = |x^2 - 4x + 3|$$

$$\Rightarrow f(x) = \begin{cases} x^2 - 4x + 3, & \text{if } x^2 - 4x + 3 \ge 0 \\ -(x^2 - 4x + 3), & \text{if } x^2 - 4x + 3 < 0 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} x^2 - 4x + 3, & \text{if } x \le 1 \text{ or } x \ge 3\\ -x^2 + 4x - 3, & \text{if } 1 < x < 3 \end{cases}$$

Clearly, f(x) is everywhere continuous Now,

(LHD at
$$x = 1$$
) = $\left(\frac{d}{dx}(x^2 - 4x + 3)\right)_{\text{at } x = 1}$
 \Rightarrow (LHD at $x = 1$) = $(2x - 4)_{\text{at } x = 1} = -2$
and,

(RHD at
$$x = 1$$
) = $\left(\frac{d}{dx}(-x^2 + 4x - 3)\right)_{\text{at } x = 1}$

$$\Rightarrow$$
 (RHD at $x = 1$) = $(-2x + 4)_{at x=1} = 2$

Clearly, (LHD at x = 1) \neq (RHD at x = 1)

So, f(x) is not differentiable at x = 1

Similarly, it can be checked that f(x) is not differentiable at x = 3 also $f(x) = |x^2 - 4x + 3| = |x - 1| |x - 3|$ Since |x - 1| = |x - 1|

$$f(x) = |x^2 - 4x + 3| = |x - 1| |x - 3|$$

Since, |x-1| and |x-3| are not differentiable at 1 and 3 respectively

Therefore, f(x) is not differentiable at x = 1 and x = 3

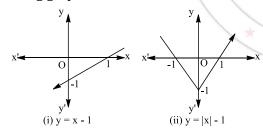
The point of discontinuity of f(x) are those points where $\tan x$ is infinite.

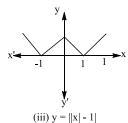
ie, $\tan x = \tan \infty$

$$\Rightarrow \quad x = (2n+1)\frac{\pi}{2}, \qquad n \in \mathbb{R}$$

12

Using graphical transformation





As, we know the function is not differentiable at 6 sharp edges and in figure (iii) y = |x| - 1 we have 3 sharp edges at x = -1, 0, 1

f(x) is not differentiable at $\{0, \pm 1\}$

$$\lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} 2(0 - h) = 0$$

And
$$\lim_{x \to 0^+} f(x) = \lim_{h \to 0} 2(0+h) + 1 = 1$$

$$\because \lim_{x \to 0^-} f(x) \neq \lim_{x \to 1^+} f(x)$$

$$f(x)$$
 is discontinuous at $x = 0$

Draw a rough sketch of y = f(x) and observe its properties

$$\lim_{x \to \infty} \frac{(1+\cos x)-\sin x}{x}$$

$$\lim_{x\to\pi} \frac{1}{(1+\cos x)+\sin x}$$

$$\lim_{x \to \pi} \frac{(1 + \cos x) - \sin x}{(1 + \cos x) + \sin x}$$

$$= \lim_{x \to \pi} \frac{2\cos^2 x/2 - 2(\sin x/2)\cos x/2}{2\cos^2 x/2 + 2(\sin x/2)\cos x/2}$$

$$= \lim_{x \to \pi} \tan\left(\frac{\pi}{4} - \frac{\pi}{2}\right) = -1$$

Since, f(x) is continuous at $x = \pi$

$$\therefore f(\pi) = \lim_{x \to \pi} f(x) = -1$$

$$f'(1^-) = \lim_{h \to 0} \frac{f(1-h) - f(1)}{-h}$$

$$= \lim_{h \to 0} \frac{(1-h-1).\sin(\frac{1}{1-h-1}) - 0}{-h}$$

$$= -\lim_{h \to 0} \sin \frac{1}{h}$$

And
$$f'(1^+) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

$$= \lim_{h \to 0} \frac{(1+h-1)\sin(\frac{1}{1+h-1}) - 0}{h}$$

$$= \lim_{h \to 0} \sin \frac{1}{h}$$

$$f'(1^-) \neq f'(1^+)$$

f is not differentiable at x = 1

Again, now

$$f'(0^+) = \lim_{h \to 0} \frac{(0+h-1)\sin\left(\frac{1}{0+h-1}\right) - \sin 1}{h}$$
$$= \lim_{h \to 0} \frac{\left[-\left\{ (h-1)\cos\left(\frac{1}{h-1}\right) \times \left(\frac{1}{(h-1)^2}\right) \right\} + \sin\left(\frac{1}{h-1}\right) \right]}{1}$$

[using L 'Hospital's rule]

$$= \cos 1 - \sin 1$$

And
$$f'(0^-) = \lim_{h \to 0} \frac{(0-h-1)\sin(\frac{1}{0-h-1})-\sin 1}{-h}$$

$$=\lim_{h\to 0} \ \frac{(-h-1)\cos\left(\frac{1}{-h-1}\right)\left(\frac{1}{(-h-1)^2}\right)-\sin\left(\frac{1}{-h-1}\right)}{-1}$$

[using L 'Hospital's rule]

$$= \cos 1 - \sin 1$$

$$\Rightarrow f'(0^-) = f'(0^+)$$

 \therefore *f* is differentiable at x = 0

As f(x) is continuous at $x = \frac{\pi}{2}$

$$\lim_{x \to \frac{\pi_{-}}{2}} f(x) = \lim_{x \to \frac{\pi_{+}}{2}} f(x)$$

$$\lim_{x \to \frac{\pi_{-}}{2}} \pi$$

$$\Rightarrow m\frac{\pi}{2} + 1 = \sin\frac{\pi}{2} + n \Rightarrow m\frac{\pi}{2} + 1 = 1 + n \Rightarrow n = \frac{m\pi}{2}$$

Since,
$$\frac{f(6)-f(1)}{6-1} \ge 2$$
 $\left[\because f'(x) = \frac{y_2-y_1}{x_2-x_1}\right]$

$$\Rightarrow f(6) - f(1) \ge 10$$

$$\Rightarrow f(6) + 2 \ge 10$$

$$\Rightarrow f(6) \ge 8$$

We have.

$$\lim_{x \to a^{-}} f(x) \ g(x) = \lim_{x \to a^{-}} f(x) \cdot \lim_{x \to a^{-}} g(x) = m \times l = ml$$

and,

$$\lim_{x \to a^{+}} f(x) \ g(x) = \lim_{x \to a^{+}} f(x) \lim_{x \to a^{+}} g(x) = lm$$

$$\lim_{x \to a^{-}} f(x) \ g(x) = \lim_{x \to a^{+}} f(x) \ g(x) = lm$$

Hence, $\lim_{x\to a} f(x) \ g(x)$ exists and is equal to lm

We have,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - 1}{h} \qquad [\because f(x + y) = f(x)f(y)]$$

$$\Rightarrow f'(x) = f(x) \left\{ \lim_{h \to 0} \frac{1 + h g(h) - 1}{h} \right\} \quad [\because f(x) = 1 + x g(x)]$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} g(h) = f(x) \cdot 1 = f(x)$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	С	В	В	С	D	С	D	В	С	D
Q.	11	12	13	14	15	16	17	18	19	20
A.	C	A	C	В	C	D	С	D	В	С
			/2							

SESSION: 2025-26

CLASS: XIIth

DATE:

SOLUTIONS

SUBJECT: MATHS

DPP NO.: 4

Topic: - CONTINUITY AND DIFFERENTIABILITY

1 (a)

We have,
$$f(x) = \begin{cases} x^2, & x \ge 0 \\ -x^2, & x < 0 \end{cases}$$

Clearly, f(x) is differentiable for all x > 0 and for all x < 0. So, we check the differentiable at x = 0 Now, (RHD at x = 0)

$$\left(\frac{d}{dx}(x)^2\right)_{x=0} = (2x)_{x=0} = 0$$

And (LHD at = 0)

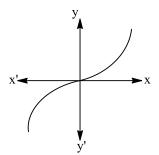
$$\left(\frac{d}{dx}(-x)^2\right)_{x=0} = (-2x)_{x=0} = 0$$

$$\therefore$$
 (LHD at $x = 0$)=(RHD at $x = 0$)

So, f(x) is differentiable for all x ie, the set of all points where f(x) is differentiable is $(-\infty, \infty)$

Alternate

It is clear from the graph f(x) is differentiable everywhere.



2 **(a)**

Since,
$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 10$$

$$\Rightarrow \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = 10$$

$$\Rightarrow f(0) \left(\lim_{h \to 0} \frac{f(h) - 1}{h} \right) = 10 \quad \dots (i)$$

$$[: f(0+h) = f(0)f(h), given]$$

Now,
$$f(0) = f(0)f(0)$$

$$\Rightarrow f(0) = 1$$

$$\lim_{h \to 0} \frac{f(h) - 1}{h} = 10 \quad ...(ii)$$

Now,
$$f'(6) = \lim_{h \to 0} \frac{f(6+h) - f(6)}{h}$$

= $\lim_{x \to 0} \left(\frac{f(h) - 1}{h}\right) f(6)$ [from Eq. (ii)]
= $10 \times 3 = 30$
3 (a)

$$f'(a^{+}) = \lim_{x \to a^{+}} \frac{f(x) - f(0)}{x - a}$$

$$\Rightarrow f'(a^{+}) = \lim_{x \to a^{+}} \frac{|x - a| \phi(x)|}{x - a}$$

$$\Rightarrow f'(a^{+}) = \lim_{x \to a} \frac{(x - a)}{(x - a)} \phi(x) \quad [\because x > a \ \because |x - a| = x - a]$$

$$\Rightarrow f'(a^{+}) = \lim_{x \to a} \phi(x)$$

$$\Rightarrow f'(a^{+}) = \phi(a) \quad [\because \phi(x) \text{ is continuous at } x = a]$$
and,

$$f'(a^{-}) = \lim_{x \to a^{-}} \frac{f(x) - f(0)}{x - a}$$

$$\Rightarrow f'(a^{-}) = \lim_{x \to a^{-}} \frac{|x - a| \phi(x)}{x - a}$$

$$\Rightarrow f'(a^{-}) = \lim_{x \to a} \frac{(x - a) \phi(x)}{(x - a)} \quad [\because x < a \ \because |x - a| = -(x - a)]$$

$$\Rightarrow f'(a^{-}) = -\lim_{x \to a} \phi(x)$$

$$\Rightarrow f'(a^{-}) = -\phi(a) \quad [\because \phi(x) \text{ is continuous at } x = a]$$

LHL=
$$\lim_{h\to 0} (0-h)_e^{-\left(\frac{1}{|-h|} + \frac{1}{(-h)}\right)} = \lim_{h\to 0} (-h) = 0$$

LHL=
$$\lim_{h\to 0} (0-h)_e^{-(-h)^{\frac{1}{2}}(-h)^{\frac{1}{2}}} = \lim_{h\to 0} (-h) = 0$$

RHL= $\lim_{h\to 0} (0+h)_e^{-(\frac{1}{|h|} + \frac{1}{(h)})} = \lim_{h\to 0} \frac{h}{e^{2/h}} = 0$

LHL=RHL= $f(0)$

$$LHL=RHL=f(0)$$

Therefore, f(x) is continuous for all x

Differentiability at x = 0

$$Lf'(0) = \lim_{h \to 0} \frac{(-h)e^{-\left(\frac{1}{h} - \frac{1}{h}\right)}}{(-h) - 0} = 1$$

$$Rf'(0) = \lim_{h \to 0} \frac{he^{-\left(\frac{1}{h} + \frac{1}{h}\right) - 0}}{h - 0}$$

$$= \lim_{h \to 0} \frac{1}{e^{2/h}} = 0$$

$$\Rightarrow Rf'(0)Lf'(0)$$

Therefore, f(x) is not differentiable at x = 0

We have,

$$f(x) = \begin{cases} 3, & x < 0 \\ 2x + 1, & x \ge 0 \end{cases}$$

Clearly, f is continuous but not differentiable at x = 0

Now,

$$f(|x|) = 2|x| + 1$$
for all x

Clearly, f(|x|) is everywhere continuous but not differentiable at x = 0

7 (

We have,

$$f(x) = |x - 0.5| + |x - 1| + \tan x, 0 < x < 2$$

$$\Rightarrow f(x) = \begin{cases} -2x + 1.5 + \tan x, & 0 < x < 0.5 \\ 0.5 + \tan x, & 0.5 \le x < 1 \\ 2x - 1.5 + \tan x, & 1 \le x < 2 \end{cases}$$

It is evident from the above definition that

$$Lf'(0.5) \neq Rf'(0.5)$$
 and $Lf'(1) \neq Rf'(1)$

Also, the function is not continuous at $= \pi/2$. So, it cannot be differentiable thereat

8 **(d**)

Given,
$$f(x) = \begin{cases} \log_{(1-3x)}(1+3x), & \text{for } x \neq 0 \\ k, & \text{for } x = 0 \end{cases}$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\log(1 + 3x)}{\log(1 - 3x)}$$

$$= -\lim_{x \to 0} \frac{\log(1+3x)}{3x} \cdot \frac{(-3x)}{\log(1-3x)}$$

= -1

And
$$f(0) = k$$

$$f(x)$$
 is continuous at $x = 0$

$$\therefore k = -1$$

9 **(d**

Since f(x) is differentiable at x = c. Therefore, it is continuous at x = c

Hence, $\lim_{x \to c} f(x) = f(c)$

10 **(a)**

Given,
$$f(x) = ae^{|x|} + b|x|^2$$

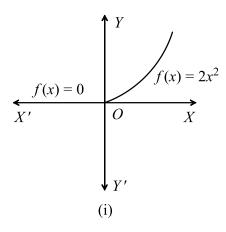
We know $e^{|x|}$ is not differentiable at x = 0 and $|x|^2$ is differentiable at x = 0

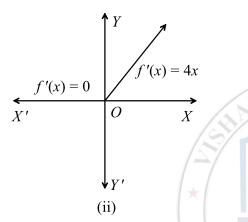
f(x) is differentiable at x = 0, if a = 0 and $b \in R$

11 **(a)**

We have,

$$f(x) = \begin{cases} (x-x)(-x) = 0, x < 0\\ (x+x)x = 2x^2, x \ge 0 \end{cases}$$





As is evident from the graph of f(x) that it is continuous and differentiable for all xAlso, we have

$$f''(x) = \begin{cases} 0, x < 0 \\ 4x, x \ge 0 \end{cases}$$

Clearly, f''(x) is continuous for all x but it is not differentiable at x=0

12

Given,
$$f(x) = \begin{cases} \frac{x-1}{2x^2 - 7x + 5}, & x \neq 1 \\ -\frac{1}{3}, & x = 1 \end{cases}$$

$$f(x) = \begin{cases} \frac{1}{2x - 5}, & x \neq 1 \\ -\frac{1}{3}, & x = 1 \end{cases}$$

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$
$$= \lim_{h \to 0} \frac{\frac{1}{2(1+h) - 5} - \left(-\frac{1}{3}\right)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{1}{2h-3} + \frac{1}{3}}{h} = \lim_{h \to 0} \frac{3+2h-3}{3h(2h-3)} = -\frac{2}{9}$$

$$Lf'(1) = \lim_{h \to 0} \frac{f(1-h) - f(1)}{-h}$$

$$= \lim_{h \to 0} \frac{\frac{1}{2(1-h)-5} - \left(-\frac{1}{3}\right)}{-h}$$

$$= \lim_{h \to 0} -\frac{2}{3(2h+3)} = -\frac{2}{9}$$

$$\therefore f'(1) = -\frac{2}{9}$$

13 **(b**)

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{f(1+h)}{h} - \lim_{h \to 0} \frac{f(1)}{h}$$

Given,
$$\lim_{h\to 0} \frac{f(1+h)}{h} = 5$$

So, $\lim_{h\to 0} \frac{f(1)}{h}$ must be finite as f'(1) exist and $\lim_{h\to 0} \frac{f(1)}{h}$ can be finite only, if f(1)=0 and $\lim_{h\to 0} \frac{f(1)}{h}=0$

So,
$$f'(1) = \lim_{h \to 0} \frac{f(1+h)}{h} = 5$$

14 **(c)**

Since, f(x) is continuous for every value of R except $\{-1, -2\}$. Now, we have to check that points

At
$$x = -2$$

LHL=
$$\lim_{h \to 0} \frac{(-2-h)+2}{(-2-h)^2+3(-2-h)+2}$$
$$-h$$

$$=\lim_{h\to 0}\frac{-h}{h^2+h}=-1$$

RHL=
$$\lim_{h\to 0} \frac{(-2+h)+2}{(-2+h)^2+3(-2+h)+2}$$

$$=\lim_{h\to 0}\frac{h}{h^2-h}=-1$$

$$\Rightarrow$$
 LHL=RHL= $f(-2)$

$$\therefore$$
 It is continuous at $x = -2$

Now, check for x = -1

LHL=
$$\lim_{h\to 0} \frac{(-1-h)+2}{(-1-h)^2+3(-1-h)+2}$$

$$=\lim_{h\to 0}\frac{1-h}{h^2-h}=\infty$$

RHL=
$$\lim_{h\to 0} \frac{(-1+h)+2}{(-1+h)^2+3(-1+h)+2}$$

$$=\lim_{h\to 0}\frac{1+h}{h^2+h}=\infty$$

$$\Rightarrow$$
 LHL=RHL $\neq f(-1)$

$$\therefore$$
 It is not continuous at $x = -1$

The required function is continuous in $R-\{-1\}$

$$f(0) = \lim_{x \to 0} \frac{(e^x - 1)^2}{\sin\left(\frac{x}{a}\right)\log\left(1 + \frac{x}{4}\right)}$$

$$\Rightarrow \lim_{x \to 0} \left(\frac{e^x - 1}{x} \right)^2 \cdot \frac{\frac{x}{a} \cdot a}{\sin \frac{x}{a}} \cdot \frac{\frac{x}{4} \cdot 4}{\log \left(1 + \frac{x}{4} \right)} = 12$$

$$\Rightarrow 1^2. a. 4 = 12$$

$$\Rightarrow$$
 $a=3$

$$f(x) = \frac{x}{1+x} + \frac{x}{(x+1)(2x+1)} + \frac{x}{(2x+1)(3x+1)} + \dots \infty$$

$$\Rightarrow f(x) = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{x}{\left((r-1)x+1\right)(rx+1)}, \text{ for } x \neq 0$$

$$\Rightarrow f(x) = \lim_{n \to \infty} \sum_{r=1}^{n} \left\{ \frac{1}{(r-1)x+1} - \frac{1}{rx+1} \right\}, \text{ for } x \neq 0$$

$$\Rightarrow f(x) = \lim_{n \to \infty} \left\{ 1 - \frac{2}{nx+1} \right\} = 1 \text{, for } x \neq 0$$

For x = 0, we have f(x) = 0

Thus, we have
$$f(x) = \begin{cases} 1, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Clearly,
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) \neq f(0)$$

So, f(x) is not continuous at x = 0

17 **(b)**

If possible, let f(x) + g(x) be continuous. Then, $\{f(x) + g(x)\} - f(x)$ must be continuous $\Rightarrow g(x)$ must be continuous

This is a contradiction to the given fact that g(x) is discontinuous

Hence, f(x) + g(x) must be discontinuous

We have,

Learning Without Limits

$$f(x + y) = f(x)f(y)$$
 for all $x, y \in R$

$$f(0) = f(0)f(0)$$

$$\Rightarrow f(0)\{f(0) - 1\} = 0$$

$$\Rightarrow f(0) = 1$$
 [: $f(0) \neq 1$]

Now,

$$f'(0) = 0$$

$$\Rightarrow \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = 2$$

$$\Rightarrow \lim_{h \to 0} \frac{f(h)-1}{h} = 2 \quad [\because f(0) = 1] \quad \dots(i)$$

$$\therefore f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h} \quad [\because f(x+y) = f(x)f(y)]$$

$$\Rightarrow f'(x) = f(x) \left\{ \lim_{h \to 0} \frac{f(h) - 1}{h} \right\} = 2f(x) \quad \text{[Using (i)]}$$

We have,

$$f(x) = \begin{cases} \frac{x^2}{|x|}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} \frac{x^2}{2} = x, & x > 0 \\ 0, & x = 0 \end{cases}$$

$$\frac{x^2}{-x} = -x, & x < 0$$

$$\Rightarrow \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} -x = 0, \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} x = 0 \text{ and } f(0) = 0$$

So, f(x) is continuous at x = 0. Also, f(x) is continuous for all other values of x

Hence, f(x) is everywhere continuous

Clearly, Lf'(0) = -1 and Rf'(0) = 1

Therefore, f(x) is not differentiable at x = 0

20 (b)

Since f(x) is continuous at x = 0

Now, using L' Hospital's rule, we have

$$\lim_{x \to 0} \frac{\int_0^x f(u) \ du}{x} = \lim_{x \to 0} \frac{f(x)}{1} = f(0) \quad [\because f(x) \text{ is continuous at } x = 0]$$

$$\Rightarrow \lim_{x \to 0} \frac{\int_0^x f(u) \ du}{x} = 2 \quad [\text{Using (i)}]$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
Α.	A	A	A	В	D	A	С	D	D	A
Q.	11	12	13	14	15	16	17	18	19	20
A.	A	В	В	С	D	В	В	С	В	В

SESSION: 2025-26

CLASS: XIIth

DATE:

SOLUTIONS

SUBJECT : MATHS DPP NO. : 5

Topic:- CONTINUITY AND DIFFERENTIABILITY

$$f'(2^+) = \lim_{x \to 2^+} \left(\frac{f(x) - f(2)}{x - 2} \right)$$

$$= \lim_{x \to 2^+} \frac{3x + 4 - (6 + 4)}{x - 2} = \lim_{x \to 2} \frac{3x - 6}{x - 2} = 3$$

3 **(a)**

Here,
$$f(x) = \begin{cases} \sin x, x > 0 \\ 0, x = 0 \\ -\sin x, x < 0 \end{cases}$$

RHD=
$$\lim_{h\to 0} \frac{\sin|0+h|-\sin(0)}{h}$$

$$=\lim_{h\to 0} \frac{\sin h}{h} = 1$$

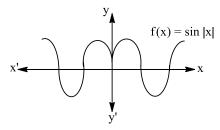
LHD=
$$\lim_{h\to 0} \frac{\sin|(0-h)|-\sin(0)}{-h}$$

$$=\frac{-\sin h}{h}=-1$$

 \therefore LHD \neq RHD at x = 0

f(x) is not derivable at x = 0

Alternate



It is clear from the graph that f(x) is not differentiable at x = 0

4 **(b)**

We have,

$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} (\log_e a)^n$$

$$\Rightarrow f(x) = \sum_{n=0}^{\infty} \frac{(x \log_e a)^n}{n!} = \sum_{n=0}^{\infty} \frac{(\log_e a^x)^n}{n!}$$

 $\Rightarrow f(x) = e^{\log_e a^x} = a^x$, which is everywhere continuous and differentiable

5 **(c)**

$$f(x) = [x] \cos \left[\frac{2x - 1}{2} \right] \pi$$

Since, [x] is always discontinuous at all integer value, hence f(x) is discontinuous for all integer value

6 **(c)**

The function f is clearly continuous for |x| > 1

We observe that

$$\lim_{x \to -1^+} f(x) = 1, \lim_{x \to -1^-} f(x) = \frac{1}{4}$$

Also,
$$\lim_{x \to \frac{1+}{n}} f(x) = \frac{1}{n^2}$$
 and, $\lim_{x \to \frac{1-}{n}} f(x) = \frac{1}{(n+1)^2}$

Thus, f is discontinuous for $x = \pm \frac{1}{n}$, n = 1, 2, 3, ...

7 (c)

Since, $|f(x) - f(y)| \le (x - y)^2$

$$\Rightarrow \lim_{x \to y} \frac{|f(x) - f(y)|}{|x - y|} \le \lim_{x \to y} |x - y|$$

$$\Rightarrow |f'(y)| \le 0$$

$$\Rightarrow f'(y) = 0$$

$$\Rightarrow f(y) = constant$$

$$\Rightarrow f(y) = 0 \Rightarrow f(1) = 0$$
 [: $f(0) = 0$, given]

8 **(b)**

Since $\phi(x) = 2x^3 - 5$ is an increasing function on (1, 2) such that $\phi(1) = -3$ and $\phi(2) = 11$ Clearly, between -3 and 11 there are thirteen points where $f(x) = [2x^3 - 5]$ is discontinuous

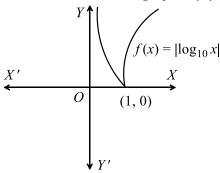
9 **(c)**

Clearly, $[x^2 + 1]$ is discontinuous at $x = \sqrt{2}, \sqrt{3}, \sqrt{4}, \sqrt{5}, \sqrt{6}, \sqrt{7}, \sqrt{8}$

Note that it is right continuous at x = 1 but not left continuous at x = 3

10 (a)

As is evident from the graph of f(x) that it is continuous but not differentiable at x = 1



Now,

$$f''(1^{+}) = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$

$$\Rightarrow f''(1^{+}) = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h}$$

$$\Rightarrow f''(1^{+}) = \lim_{h \to 0} \frac{\log_{10}(1 + h) - 0}{h}$$

$$\Rightarrow f''(1^{+}) = \lim_{h \to 0} \frac{\log(1 + h)}{h \cdot \log_{e} 10} = \frac{1}{\log_{e} 10} = \log_{10} e$$

$$f''(1^{-}) = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$

$$\Rightarrow f''(1^{-}) = \lim_{h \to 0} \frac{f(1 - h) - f(1)}{h}$$

$$\Rightarrow f''(1^{-}) = \lim_{h \to 0} \frac{\log_{10}(1 - h)}{h} = \lim_{h \to 0} \frac{\log_{e}(1 - h)}{h \log_{e} 10} = -\log_{10} e$$

11 **(b)** It can be easily seen from the graph of $f(x) = |\cos x|$ that it is everywhere continuous but not

12 **(d)**

We have.

$$\lim_{x \to 4^{-}} f(x) = \lim_{h \to 0} f(4 - h) = \lim_{h \to 0} \frac{4 - h - 4}{|4 - h - 4|} + a$$

$$\Rightarrow \lim_{x \to 4^{-}} f(x) = \lim_{h \to 0} -\frac{h}{h} + a = a - 1$$

$$\Rightarrow \lim_{x \to 4^{-}} f(x) = \lim_{h \to 0} f(4 + h) = \lim_{h \to 0} \frac{4 + h - 4}{|4 + h - 4|} + b = b + 1$$
and, $f(4) = a + b$

Since f(x) is continuous at x = 4. Therefore,

differentiable at odd multiples of $\pi/2$

$$\lim_{x \to 4^{-}} f(x) = f(4) = \lim_{x \to 4^{+}} f(x)$$

$$\Rightarrow a-1=a+b=b+1 \Rightarrow b=-1$$
 and $a=1$

13 **(b**)

We have,

$$f(x) = \begin{cases} \frac{2^{x} - 1}{\sqrt{1 + x} - 1}, -1 \le x < \infty, & x \ne 0 \\ k, & x = 0 \end{cases}$$

Since, f(x) is continuous everywhere

$$\lim_{x \to 0^{-}} f(x) = f(0) \quad ...(i)$$

Now,
$$\lim_{x\to 0^{-}} f(x) = \lim_{h\to 0} \frac{2^{(0-h)}-1}{\sqrt{1+(0-h)}-1}$$

$$= \lim_{h\to 0} \frac{2^{-h}-1}{\sqrt{1-h}-1}$$

$$= \lim_{h\to 0} \frac{-2^{-h}\log_{e} 2}{\frac{-1}{2\sqrt{1-h}}} \text{ [by L' Hospital's rule]}$$

$$= 2 \lim_{h\to 0} 2^{-h}\log_{e} 2\sqrt{1-h}$$

$$= 2 \log_e 2$$

From Eq. (i),

$$f(0) = 2\log_e 2 = \log_e 4$$

(b)

15

We have,

$$\lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} f(-h) = \lim_{h \to 0} \frac{e^{-1/h} - 1}{e^{-1/h} + 1} = -1$$

and,

$$\lim_{x \to 0^+} f(x) = \lim_{h \to 0} f(h) = \lim_{x \to 0} \frac{e^{1/h} - 1}{e^{1/h} + 1} = \lim_{h \to 0} \frac{e^{-1/h}}{e^{-1/h}} = 1$$

$$\therefore \lim_{x \to 0^-} f(x) \neq \lim_{x \to 0^+} f(x)$$

Hence, f(x) is not continuous at x = 0

16 **(c)**

LHL=
$$\lim_{x \to 2^{-}} f(x) = \lim_{h \to 0} 1 + (2 - h) = 3$$

RHL=
$$\lim_{x \to 2^+} f(x) = \lim_{h \to 0} 5 - (2+h) = 3, \quad f(2) = 3$$

Hence, f is continuous at x = 2

Now,
$$Rf''(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$$

$$= \lim_{h \to 0} \frac{5 - (2 + h) - 3}{h} = -1$$

$$Lf''(2) = \lim_{h \to 0} \frac{f(2-h) - f(2)}{-h}$$

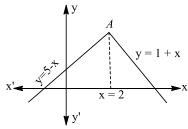
$$= \lim_{h \to 0} \frac{1 + (2 - h) - 3}{-h} = 1$$

$$\therefore Rf''(2) \neq Lf''(2)$$

 \therefore *f* is not differentiable at x = 2

ACADEMY Leaving Without Limits

Alternate



It is clear from the graph that f(x) is continuous everywhere also it is differentiable everywhere except at x=2

17 **(d)**

We have,

$$f(x + y) = f(x)f(y)$$
 for all $x, y \in R$

Putting x = 1, y = 0, we get

$$f(0) = f(1)f(0) \Rightarrow f(0)(1 - f(1)) = 0$$

$$\Rightarrow f(1) = 1 \qquad [\because f(0) \neq 0]$$

Now,

$$f'(1) = 2$$

$$\Rightarrow \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = 2$$

$$\Rightarrow \lim_{h \to 0} \frac{f(1)f(h) - f(1)}{h} = 2$$

$$\Rightarrow f(1) \lim_{h \to 0} \frac{f(h) - 1}{h} = 2$$

$$\Rightarrow \lim_{h \to 0} \frac{f(h) - 1}{h} = 2 \quad [\text{Using } f(1) = 1] \quad ...(i)$$

$$\therefore f'(4) = \lim_{h \to 0} \frac{f(4+h) - f(4)}{h}$$

$$\Rightarrow f'(4) = \lim_{h \to 0} \frac{f(4)f(h) - f(4)}{h}$$

$$\Rightarrow f'(4) = \left\{\lim_{h \to 0} \frac{f(h) - 1}{h}\right\} f(4)$$

$$\Rightarrow f'(4) = 2 f(4) \quad [\text{From (i)}]$$

$$\Rightarrow f'(4) = 2 \times 4 = 8$$
18 **(d)**

$$\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{+}} g(x) = 1 \text{ and } g(1) = 0$$

So, g(x) is not continuous at x = 1 but $\lim_{x \to 1} g(x)$ exists

We have,

$$\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} f(1 - h) = \lim_{h \to 0} [1 - h] = 0$$
and,

$$\lim_{x\to 1^+}f(x)=\lim_{h\to 0}f(1+h)=\lim_{h\to 0}[1+h]=1 \text{ surring without Limits}$$

So, $\lim_{x\to 1} f(x)$ does not exist and so f(x) is not continuous at x=1

We have,
$$gof(x) = g(f(x)) = g([x]) = 0$$
, for all $x \in R$

So, *gof* is continuous for all *x*

We have,

$$fog(x) = f(g(x))$$

$$\Rightarrow f \circ g(x) = \begin{cases} f(0), & x \in \mathbb{Z} \\ f(x^2), & x \in \mathbb{R} - \mathbb{Z} \end{cases}$$
$$\Rightarrow f \circ g(x) = \begin{cases} 0, & x \in \mathbb{Z} \\ [x^2], & x \in \mathbb{R} - \mathbb{Z} \end{cases}$$

Which is clearly not continuous

At
$$x = 1$$
,

RHD=
$$\lim_{h \to 0^+} \frac{f(1+h)-f(1)}{h}$$

= $\lim_{h \to 0} \frac{2-(1+h)-(2-1)}{h} = -1$

LHD=
$$\lim_{h\to 0^{-}} \frac{f(1-h)-f(1)}{-h}$$

$$= \lim_{h \to 0} \frac{(1-h) - (2-1)}{-h} = 1$$

∴ LHD≠RHD

20

(d)

Given, $f(x) = |x| + \frac{|x|}{x}$

Let $f_1(x) = |x|$, $f_2(x) = \frac{|x|}{x}$

1. LHL= $\lim_{x\to 0^-} f_1(x) = \lim_{x\to 0^-} |x| = 0$

And RHL $\lim_{x\to 0^+} f_1(x) = \lim_{x\to 0^+} |x| = 0$

Here, LHL=RHL=f(0), $f_1(x)$ is continuous

2. LHL=
$$\lim_{x\to 0^-} \frac{|x|}{x} = \lim_{h\to 0} \frac{|0-h|}{0-h} = -1$$

RHL=
$$\lim_{x\to 0^+} \frac{|x|}{x} = \lim_{h\to 0} \frac{|0+h|}{h} = 1$$

∴ LHL \neq RHL, $f_2(x)$ is discontinuous

Hence, f(x) is discontinuous at x = 0

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
Α.	D	С	A	В	С	С	С	В	С	A
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	D	В	С	В	С	D	D	D	D

SESSION: 2025-26

CLASS: XIIth

DATE:

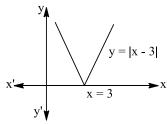
SOLUTIONS

SUBJECT: MATHS

DPP NO.: 6

Topic:- CONTINUITY AND DIFFERENTIABILITY

From the graph it is clear that f(x) is continuous everywhere but not differentiable at x = 3



(b)

Given,
$$f(x) = \begin{cases} \frac{2x-3}{2x-3}, & \text{if } x > \frac{3}{2} \\ \frac{-(2x-3)}{2x-3}, & \text{if } x < \frac{3}{2} \end{cases}$$

$$= \begin{cases} 1, & \text{if } x > \frac{3}{2} \\ -1, & \text{if } x < \frac{3}{2} \end{cases}$$

Now, RHL= $\lim_{x \to \frac{3^{+}}{2}} f(x) = \lim_{x \to \frac{3^{+}}{2}} 1 = 1$ And LHL= $\lim_{x \to \frac{3^{-}}{2}} f(x) = \lim_{x \to \frac{3^{-}}{2}} (-1) = -1$

- RHL≠LHL
- f(x) is discontinuous at $x = \frac{3}{2}$

(c)

Since the functions $(\log t)^2$ and $\frac{\sin t}{t}$ are not defined on (-1,2). Therefore, the functions in options (a) and (b) are not defined on (-1, 2)

The function $g(t) = \frac{1-t+t^2}{1+t+t^2}$ is continuous on (-1,2) and

 $f(x) = \int_0^x \frac{1-t+t^2}{1+t+t^2} dt$ is the integral function of g(t)

Therefore, f(x) is differentiable on (-1, 2) such that f'(x) = g(x)

Since, $f(x) = \frac{1-\tan x}{4x-\pi}$

Now, $\lim_{x \to \pi/4} f(x) = \lim_{x \to \pi/4} \left(\frac{1 - \tan x}{4x - \pi} \right)$

$$=\lim_{x\to\pi/4}\left(\frac{-\sec^2x}{4}\right)=-\frac{1}{2}$$

Since, f(x) is continuous at

$$x = \frac{\pi}{4}$$

$$\therefore \lim_{x \to \pi/4} f(x) = f\left(\frac{\pi}{4}\right) = -\frac{1}{2}$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{2 \sin^2 \frac{x}{2}}{4 \left(\frac{x}{2}\right)^2} \cdot x = 0$$

Also,
$$f(0) = k$$

For,
$$\lim_{x\to 0} f(x) = f(0) \Rightarrow k = 0$$

(a)

We have.

$$f(x) = |x| + |x - 1|$$

$$f(x) = |x| + |x - 1|$$

$$\Rightarrow f(x) = \begin{cases} -2x + 1, & x < 0 \\ x - x + 1, & 0 \le x < 1 \\ x + x - 1, & x \ge 1 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} -2x + 1, & x < 0 \\ 1, & 0 \le x < 1 \\ 2x - 1, & x \ge 1 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} -2x + 1, & x < 0 \\ 1, & 0 \le x < 1 \\ 2x - 1, & x \ge 1 \end{cases}$$

Clearly,
$$\lim_{x \to 0^{-}} f(x) = 1 = \lim_{x \to 0^{+}} f(x)$$
 and $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x)$

So, f(x) is continuous at x = 0, 1

(d)

$$f(0) = \lim_{x \to 0} \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x}$$

$$= \lim_{x \to 0} \frac{2 - \frac{\sin^{-1} x}{x}}{2 + \frac{\tan^{-1} x}{x}}$$

$$=\frac{2-1}{2+1}=\frac{1}{3}$$

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{1+h-1}{2(1+h)^2 - 7(1+h) + 5} - \left(\frac{1}{3}\right)}{h}$$

$$= \lim_{h \to 0} \frac{\left(\frac{1}{2h-3} + \frac{1}{3}\right)}{h} = \lim_{h \to 0} \left(\frac{2h}{3h(2h-3)}\right) = -\frac{2}{9}$$

LHL=
$$\lim_{h\to 0} f\left(-\frac{\pi}{2} - h\right) = \lim_{h\to 0} 2\cos\left(-\frac{\pi}{2} - h\right) = 0$$

RHL=
$$\lim_{h\to 0} f\left(-\frac{\pi}{2} + h\right) = \lim_{h\to 0} 2 a \sin\left(-\frac{\pi}{2} + h\right) + b$$

= $-a + b$

Since, function is continuous.

$$\therefore$$
 RHL=LHL \Rightarrow $a = b$

From the given options only (a) ie, $\left(\frac{1}{2}, \frac{1}{2}\right)$ satisfies this condition

11 **(a**)

We have,

$$f'(0) = 3$$

$$\Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 3$$

$$\Rightarrow \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = 3 \quad \text{[Using: (RHD at } x = 0) = 3\text{]}$$

$$\Rightarrow \lim_{h \to 0} \frac{f(0)f(h) - f(0)}{h} = 3 \quad \begin{bmatrix} \because f(x+y) = f(x)f(y) \\ \therefore f(0+h) = f(0)f(h) \end{bmatrix}$$

$$\Rightarrow f(0) \left(\lim_{h \to 0} \frac{f(h) - 1}{h} \right) = 3 \quad \dots (i)$$

Now, f(x + y) = f(x)f(y) for all $x, y \in R$

$$\Rightarrow f(0) = f(0)f(0)$$

$$\Rightarrow f(0)\{1 - f(0)\} = 0 \Rightarrow f(0) = 1$$

Putting f(0) = 1 in (i), we get

$$\lim_{h \to 0} \frac{f(h) - 1}{h} = 3 \qquad ...(ii)$$

Now.

$$f'(5) = \lim_{h \to 0} \frac{f(5+h) - f(5)}{h}$$

$$f(5)f(h) - f(5)$$

$$\Rightarrow f'(5) = \lim_{h \to 0} \frac{f(5)f(h) - f(5)}{h}$$

$$\Rightarrow f'(5) = \left\{ \lim_{h \to 0} \frac{f(h) - 1}{h} \right\} f(5) = 3 \times 2 = 6 \quad \text{[Using (ii)]}$$

12 **(c**)

We have,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f(x)' = \lim_{h \to 0} \frac{f(x) + f(h) - f(x)}{h}$$

$$\Rightarrow f(x)' = \lim_{h \to 0} \frac{f(h)}{h}$$

$$\Rightarrow f(x)' = \lim_{h \to 0} \frac{h g(h)}{h} \lim_{h \to 0} g(h) = g(0) \quad [\because g \text{ is conti. at } x = 0]$$

13 **(b)**

The domain of f(x) is $[2, \infty)$

We have,

$$f(x) = \sqrt{\frac{\left(\sqrt{2x-4}\right)^2}{2} + 2 + 2\sqrt{2x-4}}$$

$$+\sqrt{\frac{(\sqrt{2x-4})^2}{2}} + 2 - 2\sqrt{2x-4}$$

$$\Rightarrow f(x) = \frac{1}{\sqrt{2}}\sqrt{(\sqrt{2x-4})^2 + 4\sqrt{2x-4} + 4}$$

$$+\frac{1}{\sqrt{2}}\sqrt{(\sqrt{2x-4})^2 - 4\sqrt{2x-4} + 4}$$

$$\Rightarrow f(x) = \frac{1}{\sqrt{2}}|\sqrt{2x-4} + 2| + \frac{1}{\sqrt{2}}|\sqrt{2x-4} - 2|$$

$$\Rightarrow f(x) = \begin{cases} \frac{1}{\sqrt{2}} \times 4, & \text{if } \sqrt{2x-4} < 2\\ \sqrt{2} \cdot \sqrt{2x-4}, & \text{if } \sqrt{2x-4} \ge 2 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} 2\sqrt{2}, & \text{if } x \in [2,4)\\ 2\sqrt{x-2}, & \text{if } x \in [4,\infty) \end{cases}$$
Hence, $f'(x) = \begin{cases} 0 & \text{if } x \in [2,4)\\ \frac{1}{\sqrt{x-2}} & \text{if } x \in (4,\infty) \end{cases}$

14 **(c)**

We have,

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin\left(\frac{1}{x}\right)}{x} = \lim_{x \to 0} x \sin\frac{1}{x} = 0$$

So, f(x) is differentiable at x = 0 such that f'(0) = 0

For $x \neq 0$, we have

$$f'(x) = 2 x \sin\left(\frac{1}{x}\right) + x^2 \cos\left(\frac{1}{x}\right) \left(-\frac{1}{x^2}\right)$$
Learning Without Limit

$$\Rightarrow f'(x) = 2x\sin\frac{1}{x} - \cos\frac{1}{x}$$

$$\Rightarrow \lim_{x \to 0} f'(x) = \lim_{x \to 0} 2x \sin \frac{1}{x} - \lim_{x \to 0} \cos \left(\frac{1}{x}\right) = 0 - \lim_{x \to 0} \cos \left(\frac{1}{x}\right)$$

Since $\lim_{x\to 0} \cos\left(\frac{1}{x}\right)$ does not exist

 $\lim_{x\to 0} f'(x) \text{ does not exist}$

Hence, f'(x) is not continuous at x = 0

15 **(c**)

We have,

$$f(x) = \begin{cases} \frac{x}{\sqrt{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} \frac{x}{|x|}, & x \neq 0 \\ 0, & x = 0 \end{cases} = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \\ 0, & x = 0 \end{cases}$$

CLearly, f(x) is not continuous at x = 0

17 **(c)**

Given,
$$\lim_{x\to 0} \left[(1+3x)^{\frac{1}{x}} \right] = k$$

$$e^3 = k$$

(b)

For x > 2, we have

For
$$x > 2$$
, we have
$$f(x) = \int_{0}^{x} \{5 + |1 - t|\} dt$$

$$\Rightarrow f(x) = \int_{0}^{1} (5 + (1 - t)) dt + \int_{1}^{x} (5 - (1 - t)) dt$$

$$\Rightarrow f(x) = \int_{0}^{1} (6 - t) dt + \int_{1}^{x} (4 + t) dt$$

$$\Rightarrow f(x) = \left[6t - \frac{t^{2}}{2} \right]_{0}^{1} + \left[4t + \frac{t^{2}}{2} \right]_{1}^{x}$$

$$\Rightarrow f(x) = 1 + 4x + \frac{x^{2}}{2}$$

Thus, we have

$$f(x) = \begin{cases} 5x + 1, & \text{if } x \le 2\\ \frac{x^2}{2} + 4x + 1, & \text{if } x > 2 \end{cases}$$

Clearly, f(x) is everywhere continuous and differentiable except possibly at x = 2

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2} 5x + 1 = 11$$
and.

 $\lim_{x \to 2^+} f(x) = \lim_{x \to 2} \left(\frac{x^2}{2} + 4x + 1 \right) = 11$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x)$$

So, f(x) is continuous at x = 2

Also, we have (LHD at x = 2) = $\lim_{x \to 2^{-}} f'(x) = \lim_{x \to 2} 5 = 5$

19

The given function is clearly continuous at all points except possibly at $x = \pm 1$

For f(x) to be continuous at x = 1, we must have

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$$

$$\Rightarrow \lim_{x \to 1} ax^2 + b = \lim_{x \to 1} \frac{1}{|x|}$$

$$\Rightarrow a + b = 1$$
 ...(i)

Clearly, f(x) is differentiable for all x, except possibly at $x = \pm 1$. As f(x) is an even function, so we need to check its differentiability at x = 1 only

For f(x) to be differentiable at x = 1, we must have

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$

$$\Rightarrow \lim_{x \to 1} \frac{ax^2 + b - 1}{x - 1} = \lim_{x \to 1} \frac{\frac{1}{|x|} - 1}{x - 1}$$

$$\Rightarrow \lim_{x \to 1} \frac{ax^2 - a}{x - 1} = \lim_{x \to 1} \frac{\frac{1}{x} - 1}{x - 1} \quad [\because a + b = 1 \ \because b - 1 = -a]$$

$$\Rightarrow \lim_{x \to 1} a(x + 1) = \lim_{x \to 1} \frac{-1}{x}$$

$$\Rightarrow 2a = -1 \Rightarrow a = -1/2$$
Putting $a = -1/2$ in (i), we get $b = 3/2$
20 (c)
At no point, function is continuous

	ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10	
A.	A	В	С	С	A	A	D	A	В	A	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	A	С	В	С	С	С	С	В	В	С	

SESSION: 2025-26

CLASS: XIIth

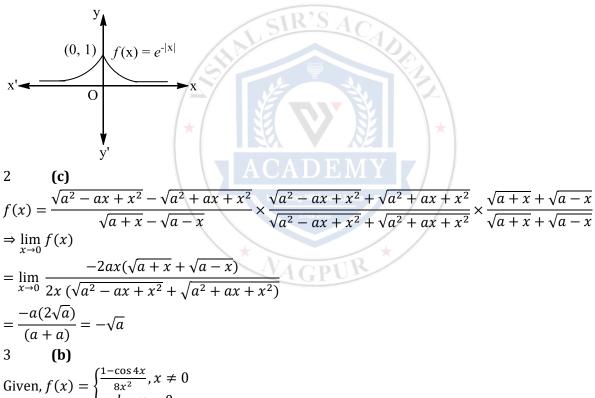
DATE:

SOLUTIONS

SUBJECT: MATHS DPP NO.: 7

Topic:- continuity and differentiability

It is clear from the figure that f(x) is continuous everywhere and not differentiable at x = 0 due to sharp edge



Given,
$$f(x) = \begin{cases} \frac{1-\cos 4x}{8x^2}, & x \neq 0 \\ k & x = 0 \end{cases}$$

$$LHL = \lim_{x \to 0^{-}} f(x)$$

$$= \lim_{h \to 0} \frac{1 - \cos 4(0 - h)}{8(0 - h)^2}$$

$$=\lim_{h\to 0}\frac{1-\sin 4h}{8h^2}$$

$$= \lim_{h \to 0} \frac{4 \sin 4h}{16h} = 1 \text{ [by L 'Hospital's rule]}$$

Since, f(x) is continuous at x = 0

$$f(0) = LHL \Rightarrow k = 1$$

Given,
$$f(x) = |x - 1| + |x - 2| + \cos x$$

Since, |x-1|, |x-2| and $\cos x$ are continuous in [0, 4]

f(x) being sum of continuous functions is also continuous

If function f(x) is continuous at x = 0, then

$$f(0) = \lim_{x \to 0} f(x)$$

$$f(0) = k = \lim_{x \to 0} x \sin \frac{1}{x}$$

$$\Rightarrow k = 0 \qquad \left[\because -1 \le \sin \frac{1}{x} \le 1 \right]$$

We have,

$$h(x) = \{f(x)\}^2 + \{g(x)\}^2$$

$$\Rightarrow h'(x) = 2f(x)2f'(x) + 2g(x)g'(x)$$

Now,

$$f'(x) = g(x)$$
 and $f''(x) = -f(x)$

$$\Rightarrow f''(x) = g'(x) \text{ and } f''(x) = -f(x)$$

$$\Rightarrow -f(x) = g'(x)$$

Thus, we have

$$f'(x) = g(x)$$
 and $g'(x) = -f(x)$

$$h'(x) = -2 g(x)g'(x) + 2 g(x)g'(x) = 0$$
, for all x

$$\Rightarrow h(x) = \text{Constant for all } x$$

But,
$$h(5) = 11$$
. Hence, $h(x) = 11$ for all x

$$f(x) = |x|^3 = \begin{cases} 0, & x = 0 \\ x^3, & x > 0 \\ -x^3, & x < 0 \end{cases}$$

Now,
$$Rf'(0) = \lim_{h \to 0} \frac{h^3 - 0}{h} = 0$$

And
$$Lf'(0) = \lim_{h \to 0} \frac{-h^3 - 0}{-h} = 0$$

$$Rf'(0) = Lf'(0) = 0$$

$$f'(0) = 0$$

We have,

(LHL at
$$x = 0$$
) = $\lim_{n \to 0^{-}} f(x) = \lim_{h \to 0} f(0 - h)$

$$\Rightarrow (LHL \text{ at } x = 0) = \lim_{n \to 0} \sin^{-1}(\cos(-h)) = \lim_{h \to 0} \sin^{-1}(\cosh h)$$

$$\Rightarrow$$
 (LHL at $x = 0$) = $\sin^{-1} 1 = \pi/2$

(RHL at
$$x = 0$$
) = $\lim_{x \to 0^+} f(x)$

$$\Rightarrow$$
 (RHL at $x = 0$) = $\lim_{h \to 0} f(0 + h) = \lim_{h \to 0} \sin^{-1}(\cos h)$

$$\Rightarrow$$
 (RHL at $x = 0$) = $\sin^{-1}(1) = \pi/2$

and,
$$f(0) = \sin^{-1}(\cos 0) = \sin^{-1}(1) = \pi/2$$

 $\therefore (LHL \text{ at } x = 0) = (RHL \text{ at } x = 0) = f(0)$ So, f(x) is continuous at x = 0

Now,

$$f'(x) = \frac{-\sin x}{\sqrt{1 - \cos^2 x}} = \frac{\sin x}{|\sin x|} = \begin{cases} \frac{-\sin x}{-\sin x} = 1, x < 0\\ \frac{-\sin x}{\sin x} = -1, x > 0 \end{cases}$$

 \therefore (LHD at x = 0) = 1 and (RHD at x = 0) = -1

Hence, f(x) is not differentiable at x = 0

9 **(d**)

For any $x \neq 1, 2$, we find that f(x) is the quotient of two polynomials and a polynomial is everywhere continuous. Therefore, f(x) is continuous for all $x \neq 1, 2$

Continuity at x = 1:

We have.

$$\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} f(1 - h)$$

$$\Rightarrow \lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} \frac{(1 - h - 2)(1 - h + 2)(1 - h + 1)(1 - h - 1)}{|(1 - h - 1)(1 - h - 2)|}$$

$$\Rightarrow \lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} \frac{(3-h)(2-h)(-1-h)(-h)}{|(-h)(-1-h)|}$$

$$\Rightarrow \lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} \frac{(3-h)(2-h)h(h+1)}{h(h+1)} = 6$$

and

$$\lim_{x \to 1^+} f(x) = \lim_{h \to 0} f(1+h)$$

$$\lim_{x \to 1^+} f(x) = \lim_{h \to 0} \frac{(1+h-2)(1+h+2)(1+h+1)(1+h-1)}{|(1+h-1)(1+h-2)|}$$

$$\lim_{x \to 1^+} f(x) = \lim_{h \to 0} \frac{(h-1)(3+h)(2+h)(h)}{|h(h-1)|}$$

$$\lim_{x \to 1^+} f(x) = -\lim_{h \to 0} \frac{(h-1)(3+h)(2+h)h}{h(1-h)} = -6$$

$$\therefore \lim_{x \to 1^{-}} f(x) \neq \lim_{x \to 1^{+}} f(x)$$

So, f(x) is not continuous at x = 1

Similarly, f(x) is not continuous at x = 2

10 **(b**)

Let
$$f(x) = \frac{g(x)}{h(x)} = \frac{x}{1+|x|}$$

It is clear that g(x) = x and h(x) = 1 + |x| are differentiable on $(-\infty, \infty)$ and $(-\infty, 0) \cup (0, \infty)$ respectively

Thus, f(x) is differentiable on $(-\infty, 0) \cup (0, \infty)$. Now, we have to check the differentiable at x = 0

$$\therefore \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\frac{x}{1 + |x|} - 0}{x} = \lim_{x \to 0} \frac{1}{1 + |x|} = 1$$

Hence, f(x) is differntaible on $(-\infty, \infty)$

11 **(b)**

At x = 0,

LHL=
$$\lim_{h\to 0} \frac{1}{1-e^{-1/(0-h)}} = \lim_{h\to 0} \frac{1}{1-e^{1/h}} = 0$$

$$\begin{split} \text{LHL} &= \lim_{h \to 0} \frac{1}{1 - e^{-1/(0 - h)}} = \lim_{h \to 0} \frac{1}{1 - e^{1/h}} = 0 \\ \text{RHL} &= \lim_{h \to 0} \frac{1}{1 - e^{-1/(0 + h)}} = \lim_{h \to 0} \frac{1}{1 - e^{-1/h}} = 1 \end{split}$$

 \therefore FUnction is not continuous at x = 0

12 (a)

We have,

$$fog = I$$

$$\Rightarrow f \circ g(x) = x \text{ for all } x$$

$$\Rightarrow f'(g(x))g'(x) = 1 \text{ for all } x$$

$$\Rightarrow f'(g(a)) = \frac{1}{g'(a)} = \frac{1}{2} \Rightarrow f'(b) = \frac{1}{2} \quad [\because f(a) = b]$$

13

Since,
$$\lim_{x\to 0} f(x) = f(0)$$

$$\Rightarrow \lim_{x \to 0} \frac{\sin \pi x}{5x} = k$$

$$\Rightarrow (1)\frac{\pi}{5} = k \quad \Rightarrow \quad k = \frac{\pi}{5} \qquad \left[\because \quad \lim_{x \to 0} \frac{\sin x}{x} = 1 \right]$$

14

Given,
$$f(x) = [x], x \in (-3.5, 100)$$

As we know greatest integer is discontinuous on integer values.

In given interval, the integer values are

$$(-3, -2, -1, 0, ..., 99)$$

∴ Total numbers of integers are 103.

15 (a)

$$LHL = \lim_{h \to 0} f(0 - h)$$

$$= \lim_{h \to 0} \frac{e^{-1/h} - 1}{e^{-1/h} + 1} = -1 \quad \left[\because \lim_{h \to 0} \frac{1}{e^{1/h}} = 0 \right]$$

$$RHL = \lim_{h \to 0} f(0 + h) = \lim_{h \to 0} \frac{e^{1/h} - 1}{e^{1/h} + 1}$$

RHL=
$$\lim_{h\to 0} f(0+h) = \lim_{h\to 0} \frac{e^{1/h}-1}{e^{1/h}+1}$$

$$= \lim_{h \to 0} \frac{1 - \frac{1}{e^{1/h}}}{1 + \frac{1}{e^{1/h}}} = 1$$

∴ LHL≠RHL

So, limit does not exist at x = 0

16

We have,

$$f(x) = x^4 + \frac{x^4}{1 + x^4} + \frac{x^4}{(1 + x^4)} + \cdots$$

$$\Rightarrow f(x) = \frac{x^4}{1 - \frac{1}{1 + x^4}} = 1 + x^4, \text{ if } x \neq 0$$

Clearly, f(x) = 0 at x = 0

Thus, we have

$$f(x) = \begin{cases} 1 + x^4, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Clearly,
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = 1 \neq f(0)$$

So, f(x) is neither continuous nor differentiable at x = 0

17

We have,

$$f(x) = \begin{cases} 1 + x, & 0 \le x \le 2 \\ 3 - x, & 2 < x \le 3 \end{cases}$$

$$g(x) = fof(x)$$

$$\Rightarrow f(x) = f(f(x))$$

$$\Rightarrow g(x) = \begin{cases} f(1+x), & 0 \le x \le 2\\ f(3-x), & 2 < x \le 3 \end{cases}$$

$$\Rightarrow f(x) = f(f(x))$$

$$\Rightarrow g(x) = \begin{cases} f(1+x), & 0 \le x \le 2 \\ f(3-x), & 2 < x \le 3 \end{cases}$$

$$\Rightarrow g(x) = \begin{cases} 1 + (1+x), & 0 \le x \le 1 \\ 3 - (1+x), & 1 < x \le 2 \\ 1 + (3-x), & 2 < x \le 3 \end{cases}$$

$$\Rightarrow g(x) = \begin{cases} 2 + x, & 0 \le x \le 1 \\ 2 - x, & 1 < x \le 2 \\ 4 - x, & 2 < x \le 3 \end{cases}$$
Clarify (2.2)

$$\Rightarrow g(x) = \begin{cases} 2+x, & 0 \le x \le 1\\ 2-x, & 1 < x \le 2\\ 4-x, & 2 < x \le 3 \end{cases}$$

Clearly, g(x) is continuous in $(0,1) \cup (1,2) \cup (2,3)$ except possibly at x=0,1,2 and 3

We observe that

$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (2 + x) = 2 = g(0)$$

and
$$\lim_{x \to 3^{-}} g(x) = \lim_{x \to 3^{-}} 4 - x = 1 = g(3)$$

Therefore, g(x) is right continuous at x = 0 and left continuous at x = 3

At x = 1, we have

$$\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{-}} 2 + x = 3$$

and,
$$\lim_{x \to 1^+} g(x) = \lim_{x \to 1^+} 2 - x = 1$$

$$\therefore \lim_{x \to 1^+} g(x) \neq \lim_{x \to 1^-} g(x)$$

So, g(x) is not continuous at x = 1

At x = 2, we have

$$\lim_{x \to 2^{-}} g(x) = \lim_{x \to 2^{-}} (2 - x) = 0$$

and,

$$\lim_{x \to 2^+} g(x) = \lim_{x \to 2^+} (4 - x) = 0$$

$$\therefore \lim_{x \to 2^-} g(x) \neq \lim_{x \to 2^+} g(x)$$

So, g(x) is not continuous at x = 2

Hence, the set of points of discontinuity of g(x) is $\{1,2\}$

Since g(x) is the inverse of function f(x)

$$\therefore gof(x) = I(x)$$
, for all x

Now,
$$gof(x) = I(x)$$
, for all x

$$\Rightarrow gof(x) = x$$
, for all x

$$\Rightarrow (gof)'(x) = 1$$
, for all x

$$\Rightarrow g'(f(x))f'(x) = 1$$
, for all x [Using Chain Rule]

$$\Rightarrow g'(f(x)) = \frac{1}{f'(x)}$$
, for all x

$$\Rightarrow g'(f(c)) = \frac{1}{f'(c)}$$
 [Putting $x = c$]

19 **(d**)

Given,
$$f(x) = \begin{cases} x^p \cos\left(\frac{1}{x}\right), x \neq 0 \\ 0, x = 0 \end{cases}$$

Since, f(x) is differentiable at x = 0, therefore it is continuous at x = 0

$$\therefore \lim_{x \to 0} f(x) = f(0) = 0$$

$$\Rightarrow \lim_{x \to 0} x^p \cos\left(\frac{1}{x}\right) = 0 \quad \Rightarrow \quad p > 0$$

As f(x) is differentiable at x = 0

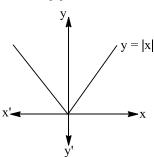
$$\therefore \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$$
 exists finitely

$$\Rightarrow \lim_{x \to 0} \frac{x^p \cos \frac{1}{x} - 0}{x}$$
 exists finitely

$$\Rightarrow \lim_{x \to 0} x^{p-1} \cos \frac{1}{x} - 0 \text{ exists finitely}$$

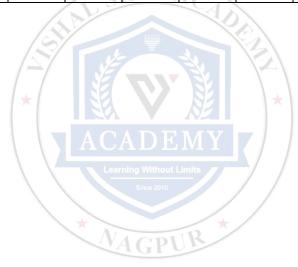
$$\Rightarrow$$
 $p-1>0$ \Rightarrow $p>1/$

20 **(a)**



It is clear from the graph that f(x) is continuous everywhere and also differentiable everywhere except at x=0

	ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10	
A.	A	С	В	D	С	В	A	В	D	В	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	В	A	A	D	A	D	A	В	D	A	
				SI	R'S	10					



SESSION: 2025-26

CLASS: XIIth

DATE:

SOLUTIONS

SUBJECT: MATHS

DPP NO.:8

Topic: - CONTINUITY AND DIFFERENTIABILITY

1 (c)

We know that the function

$$\phi(x) = (x - a)^2 \sin\left(\frac{1}{x - a}\right)$$

Is continuous and differentiable at x = a whereas the function $\Psi(x) = |x - a|$ is everywhere continuous but not differentiable at x = a

Therefore, f(x) is not differentiable at x = 1

2 **(d**)

$$\lim_{x \to 0} \frac{2^x - 2^{-x}}{x} = \lim_{x \to 0} 2^x \log 2 + 2^{-x} \log 2$$

[by L' Hospital's rule]

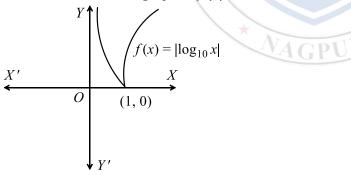
 $= \log 4$

Since, the function is continuous at x = 0

$$f(0) = \lim_{x \to 0} f(x) \Rightarrow f(0) = \log 4 \quad A$$

3 **(a**)

As is evident from the graph of f(x) that it is continuous but not differentiable at x = 1



Now,

$$f''(1^{+}) = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$

$$\Rightarrow f''(1^{+}) = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h}$$

$$\Rightarrow f''(1^{+}) = \lim_{h \to 0} \frac{\log_{10}(1 + h) - 0}{h}$$

$$\Rightarrow f''(1^{+}) = \lim_{h \to 0} \frac{\log(1 + h)}{h \cdot \log_{e} 10} = \frac{1}{\log_{e} 10} = \log_{10} e$$

$$f''(1^{-}) = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$

$$\Rightarrow f''(1^{-}) = \lim_{h \to 0} \frac{f(1 - h) - f(1)}{h}$$

$$\Rightarrow f''(1^{-}) = \lim_{h \to 0} \frac{\log_{10}(1 - h)}{h} = \lim_{h \to 0} \frac{\log_{e}(1 - h)}{h \log_{e} 10} = -\log_{10} e$$

We have,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x) + f(h) - f(x)}{h} \quad [\because f(x+y) = f(x) + f(y)]$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(h)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sin h}{h} \frac{g(h)}{h} = \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} g(h) = g(0) = k$$
5 (a)

We have,

$$f(x) = |x| + |x - 1| = \begin{cases} -2x + 1, & x < 0 \\ 1, & 0 \le x < 1 \\ 2x - 1, & 1 \le x \end{cases}$$

Clearly,
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} 1 = 1$$
, $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} (2x - 1) = 1$ and, $f(1) = 2 \times 1 - 1 = 1$

and,
$$f(1) = 2 \times 1 - 1 = 1$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$$

So, f(x) is continuous at x = 1

Now,
$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{h \to 0} \frac{f(1 - h) - f(1)}{-h} = \lim_{h \to 0} \frac{1 - 1}{-h} = 0$$

$$\lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h}$$

$$\Rightarrow \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{h \to 0} \frac{2(1 + h) - 1 - 1}{h} = 2$$

$$\therefore \text{ (LHD at } x = 1) \neq \text{ (RHD at } x = 1)$$

So, f(x) is not differentiable at x = 1

The given function is differentiable at all points except possibly at x = 0Now,

(RHD at
$$x = 0$$
)
$$= \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$

$$= \lim_{h \to 0} \frac{\sqrt{h+1} - 1}{h^{3/2}}$$

$$= \lim_{h \to 0} \frac{h}{h^{3/2}(\sqrt{h+1} + 1)} = \lim_{h \to 0} \frac{1}{\sqrt{h}(\sqrt{h+1} + 1)} \to \infty$$

So, the function is not differentiable at x = 0

Hence, the required set is $R - \{0\}$

We have,

$$f(x) f(y) = f(x) + f(y) + f(xy) - 2$$

$$\Rightarrow f(x).f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right) + f(1) - 2$$

$$\Rightarrow f(x). f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right) \quad \left[\text{`` } f(1) = 2 \text{ (Putting } x = y = 1) \right]$$
in the given relation)

$$\Rightarrow f(x) = x^n + 1$$

$$\Rightarrow f(2) = 2^n + 1$$

$$\Rightarrow$$
 5 = 2ⁿ + 1 [: $f(2)$ = 5 (given)]

$$\Rightarrow n = 2$$

$$\therefore f(x) = x^2 + 1 \Rightarrow f(3) = 10$$

We have,

$$f(x) = \frac{1}{2}x - 1$$
, for $0 \le x \le \pi$

$$\therefore \{f(x)\} = \begin{cases} -1, \text{ for } 0 \le x < 2\\ 0, \text{ for } 2 \le x \le \pi \end{cases}$$

$$\therefore \{f(x)\} = \begin{cases} -1, \text{ for } 0 \le x < 2\\ 0, \text{ for } 2 \le x \le \pi \end{cases}
\Rightarrow \tan[f(x)] = \begin{cases} \tan(-1) = -\tan(1), 0 \le x < 2\\ \tan 0 = 0, 2 \le x \le \pi \end{cases}$$

It is evident from the definition of tan[f(x)] that

$$\lim_{x \to 2^{-}} \tan[f(x)] = -\tan 1 \text{ and, } \lim_{x \to 2^{+}} \tan[f(x)] = 0$$

So, tan[f(x)] is not continuous at x = 2

Now,

$$f(x) = \frac{1}{2}x - 1 \Rightarrow f(x) = \frac{x - 2}{2} \Rightarrow \frac{1}{f(x)} = \frac{x - 2 \log Without L}{x - 2 \log 2010}$$

Clearly, f(x) is not continuous at x = 2

So, tan[f(x)] and $tan\left[\frac{1}{f(x)}\right]$ both are discontinuous at x=2

$$\lim_{x \to 0} (1+x)^{\cot x} = \lim_{x \to 0} \left\{ (1+x)^{\frac{1}{x}} \right\}^{x \cot x}$$

$$= \lim_{x \to 0} e^{x \cot x} = e$$

Since f(x) is continuous at x = 0

$$\therefore \quad f(0) = \lim_{x \to 0} f(x) = e$$

10

$$LHL = \lim_{h \to 0} f\left(\frac{\pi}{4} - h\right)$$

$$= \lim_{h \to 0} \ \frac{\tan\left(\frac{\pi}{4} - h\right) - \cot\left(\frac{\pi}{4} - h\right)}{\frac{\pi}{4} - h - \frac{\pi}{4}}$$

$$= \lim_{h \to 0} \frac{-\sec^2\left(\frac{\pi}{4} - h\right) - \csc^2\left(\frac{\pi}{4} - h\right)}{-1} = 4$$

[by L 'Hospital's rule]

Since, f(x) is continuous at $x = \frac{\pi}{4}$, then LHL= $f\left(\frac{\pi}{4}\right)$

$$\therefore a = 4$$

If $-1 \le x < 0$, then

$$f(x) = \int_{-1}^{x} |t| dt = \int_{-1}^{x} -t dt = -\frac{1}{2}(x^{2} - 1)$$

If $x \ge 0$, then

$$f(x) = \int_{-1}^{0} -t \, dt + \int_{-1}^{x} -t \, dt = \frac{1}{2}(x^2 + 1)$$

$$f(x) = \begin{cases} -\frac{1}{2}(x^2 - 2), & -1 \le x < 0 \\ \frac{1}{2}(x^2 + 1), & 0 \le x \end{cases}$$
It can be easily seen that $f(x)$ is continuous at $x = 0$

It can be easily seen that f(x) is continuous at x = 0

So, it is continuous for all x > -1

Also,
$$Rf'(0) = 0 = Lf'(0)$$

So,
$$f(x)$$
 is differentiable at $x = 0$

$$f'(x) = \begin{cases} -x, & -1 < x = 0 \\ 0, & x = 0 \\ x, & x > 0 \end{cases}$$

Clearly, f'(x) is continuous at x = 0

Consequently, it is continuous for all x > -1 i.e. for x + 1 > 0

Hence, f and f' are continuous for x + 1 > 0

We have,

$$f(x) = \lim_{n \to \infty} \frac{x^{-n} - x^n}{x^{-n} + x^n}$$

$$\Rightarrow f(x) = \lim_{n \to \infty} \frac{1 - x^{2n}}{1 + x^{2n}}$$

$$\Rightarrow f(x) = \begin{cases} \frac{1-0}{1+0} = 1, & \text{if } -1 < x < 1\\ \frac{1-1}{1+1} = 0, & \text{if } x = \pm 1\\ \frac{0-1}{0+1} = -1, & \text{if } |x| > 1 \end{cases}$$

Clearly, f(x) is discontinuous at $x = \pm 1$

13

Clearly, $\log |x|$ is discontinuous at x = 0

$$f(x) = \frac{1}{\log|x|}$$
 is not defined at $x = \pm 1$

Hence, f(x) is discontinuous at x = 0, 1, -1

For continuity,
$$\lim_{x \to 0} f(x) = k$$

$$\Rightarrow \lim_{x \to 0} \frac{\sin 3x}{\sin x} = k \Rightarrow \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot \frac{3x}{\sin 3x} = k$$

$$\Rightarrow$$
 3 = k

15 (b)

Since, the function f(x) is continuous

$$f(0) = RHL f(x) = LHLf(x)$$

Now, RHL
$$f(X) = \lim_{h \to 0} \frac{\log(1+0+h) + \log(1-0-h)}{0+h}$$

$$= \lim_{h \to 0} \frac{\log(1+h) + \log(1-h)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{1}{1+h} - \frac{1}{1-h}}{1} = 0$$

[by L 'Hospital's rule]

$$f(0) = RHL f(x) = 0$$

$$f(x) = \begin{cases} \frac{x-4}{|x-4|} + a, & x < 4\\ a+b, & x = 4\\ \frac{x-4}{|x-4|} + b, & x > 4 \end{cases} = \begin{cases} -1+a, & x < 4\\ a+b\\ 1+b, & x > 4 \end{cases}$$

$$LHL = \lim_{x \to 4^{+}} f(x) = a - 1$$

RHL=
$$\lim_{x \to 4^{+}} f(x) = 1 + b$$

Since, LHL=RHL=
$$f(4)$$

$$\Rightarrow$$
 $a-1=a+b=b+1$

$$a = 1$$
 and $b = -1$

17 (d)

We have,

$$f(x) = \begin{cases} \frac{-1}{x-1}, & 0 < x < 1\\ \frac{1-1}{x-1} = 0, & 1 < x < 2\\ 0, & x = 1 \end{cases}$$
Clearly, $\lim_{x \to 1^{-}} f(x) \to -\infty$ and $\lim_{x \to 1^{+}} f(x) = 0$

So, f(x) is not continuous at x = 1 and hence it is not differentiable at x = 1

$$\lim_{x \to \frac{\pi}{4}} f(x) = \lim_{x \to \frac{\pi}{4}} \frac{1 - \sqrt{2} \sin x}{\pi - 4x}$$

$$= \lim_{x \to \frac{\pi}{4}} \frac{-\sqrt{2}\cos x}{4} = \frac{1}{4} \quad \text{[by L 'Hospital's rule]}$$

Since, f(x) is continuous at $x = \frac{\pi}{4}$

$$\therefore \lim_{x \to \frac{\pi}{4}} f(x) = f\left(\frac{\pi}{4}\right) \quad \Rightarrow \quad \frac{1}{4} = a$$

LHL=
$$\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} 1 - h + a = 1 + a$$

RHL=
$$\lim_{x \to 1^+} f(x) = \lim_{h \to 0} 3 - (1+h)^2 = 2$$

For f(x) to be continuous, LHL=RHL

$$\Rightarrow 1 + a = 2 \Rightarrow a = 1$$

LHL=
$$\lim_{h\to 0} \frac{\cos 3(0-h) - \cos(0-h)}{(0-h)^2}$$

$$= \lim_{h \to 0} \frac{\cos 3h - \cos h}{h^2}$$

$$=\lim_{h\to 0}\frac{}{h^2}$$

$$= \lim_{h \to 0} \frac{-3\sin 3h + \sin h}{2h}$$

$$= \lim_{h \to 0} \frac{-9\cos 3h + \cos h}{2} = \frac{-9+1}{2} = -4$$

$$\begin{array}{ccc}
 & n \to 0 & 2 & 2 \\
 & \cdots & \lim_{n \to \infty} f(x) - f(0) & \to & \lambda = -A
\end{array}$$

$$\lim_{x \to 0^{-}} f(x) = f(0) \quad \Rightarrow \quad \lambda = -4$$

	ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10	
Α.	С	D	A	A	A	D	A	В	С	В	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	A	С	В	A	В	D	D	D	D	В	

SESSION: 2025-26

DPP
DAILY PRACTICE PROBLEMS

CLASS: XIIth

DATE:

SOLUTIONS

SUBJECT: MATHS

DPP NO.:9

Topic:- continuity and differentiability

LHL=
$$\lim_{x \to a^{-}} \frac{x^{3} - a^{3}}{x - a} = \lim_{h \to 0} \frac{(a - h)^{3} - a^{3}}{a - h - a}$$

$$= \lim_{h \to 0} \frac{(a - h - a)\{(a - h)^{2} + a^{3} + a(a - h)\}}{-h} = 3a^{2}$$

Since, f(x) is continuous at x = a

$$\therefore \quad \mathsf{LHL} = f(a)$$

$$\Rightarrow 3a^2 = b$$

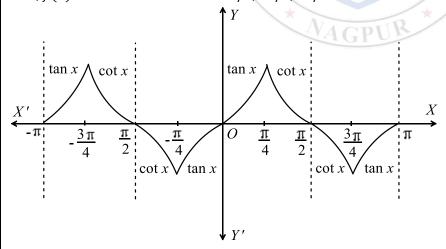
3 **(a)**

We have,

$$f(x) = \begin{cases} \tan x, & 0 \le x \le \pi/4 \\ \cot x, & -\pi/4 \le x \le \pi/2 \\ \tan x, & \pi/2 < x \le 3\pi/4 \\ \cot x, & 3\pi/4 \le x < \pi \end{cases}$$

Since $\tan x$ and $\cot x$ are periodic functions with period π . So, f(x) is also periodic with period π . It is evident from the graph that f(x) is not continuous at $x = \pi/2$. Since f(x) is periodic with period π . So, it is not continuous at $x = 0, \pm \pi/2, \pm \pi, \neq 3\pi/2$

Also, f(x) is not differentiable $x = \pi/4, 3\pi/4, 5\pi/4$ etc



We have,

$$f(x) = \{|x| - |x - 1\}^2$$

$$\Rightarrow f(x) = \begin{cases} (-x + x - 1)^2, & \text{if } x < 0 \\ (x + x - 1)^2, & \text{if } 0 \le x < 1 \\ (x - x + 1)^2, & \text{if } x \ge 1 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} 1, & \text{if } x < 0 \\ (2x - 1)^2, & \text{if } 0 < x < 1 \\ 1, & \text{if } x \ge 1 \end{cases}$$

$$\Rightarrow f'(x) = \begin{cases} 0, & \text{if } x < 0 \text{ or if } x > 1 \\ 4(2x - 1), & \text{if } 0 < x < 1 \end{cases}$$
5 **(b)**

We have.

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$\Rightarrow f'(x_0) = \lim_{x \to x_0} \frac{(x - x_0)\phi(x) - 0}{(x - x_0)}$$

$$\Rightarrow f'(x_0) = \lim_{x \to x_0} \phi(x) = \phi(x_0) \quad [\because \phi(x) \text{ is continuous at } x = x_0]$$

Since,
$$\lim_{x \to 2^+} f(x) = f(2) = k$$

$$\Rightarrow k = \lim_{h \to 0} f(2+h)$$

$$\Rightarrow k = \lim_{h \to 0} \left[(2+h)^2 + e^{\frac{1}{2-(2+h)}} \right]^{-1}$$

$$\Rightarrow \lim_{h \to 0} \left[4 + h^2 + 4h + e^{-1/h} \right]^{-1} = \frac{1}{4}$$

7 **(c**)

For f(x) to be continuous at $x = \pi/2$, we must have

$$\lim_{x \to \pi/2} f(x) = f(\pi/2)$$

$$\Rightarrow \lim_{x \to \pi/2} \frac{1 - \sin x}{(\pi - 2x)^2} \cdot \frac{\log \sin x}{\log(1 + \pi^2 - 4\pi x + 4x^2)} = k$$

$$\Rightarrow \lim_{h \to 0} \frac{1 - \cos h}{4h^2} \times \frac{\log \cos h}{\log(1 + 4h^2)} = k$$

$$\Rightarrow \lim_{h \to 0} \frac{1 - \cos h}{4h^2} \times \frac{\log\{1 + \cos h - 1\}}{\cos h - 1} \times \frac{4h^2}{\log(1 + 4h^2)} \times \frac{\cos h - 1}{4h^2} = k$$

$$\Rightarrow -\lim_{h \to 0} \left(\frac{1 - \cos h}{4h^2}\right)^2 \frac{\log(1 + (\cos h - 1))}{\cos h - 1} \times \frac{4h^2}{\log(1 + 4h^2)} = k$$

$$\Rightarrow -\lim_{h \to 0} \left(\frac{\sin^2 h/2}{2h^2}\right)^2 \frac{\log(1 + (\cos h - 1))}{\cos h - 1} \times \frac{4h^2}{\log(1 + 4h^2)} = k$$

$$1 \quad (\sin h/2)^4 \log(1 + (\cos h - 1)) \quad 4h^2$$

$$\Rightarrow -\frac{1}{64} \lim_{h \to 0} \left(\frac{\sin h/2}{h/2} \right)^4 \frac{\log(1 + (\cos h - 1))}{\cos h - 1} \times \frac{4h^2}{\log(1 + 4h^2)} = k$$
$$\Rightarrow -\frac{1}{64} = k$$

LHL=
$$\lim_{h\to 0} f(0-h) = \lim_{h\to 0} \frac{\sin 5(0-h)}{(0-h)^2 + 2(0-h)}$$

$$= -\lim_{h \to 0} \frac{\frac{\sin 5h}{5h}}{\frac{1}{5}(h-2)} = \frac{5}{2}$$

Since, it is continuous at x = 0, therefore LHL= f(0)

$$\Rightarrow \frac{5}{2} = k + \frac{1}{2} \quad \Rightarrow \quad k = 2$$

9 **(a**

Since f(x) is continuous at x = 0

$$\lim_{x \to 0} f(x) = f(0) = 0$$

$$\Rightarrow \lim_{x \to 0} x^n \sin\left(\frac{1}{x}\right) = 0 \Rightarrow n > 0$$

f(x) is differentiable at x = 0, if

$$\lim_{x\to 0} \frac{f(x)-f(0)}{x-0}$$
 exists finitely

$$\Rightarrow \lim_{x \to 0} \frac{x^n \sin^{\frac{1}{x}} - 0}{x}$$
 exists finitely

$$\Rightarrow \lim_{x \to 0} x^{n-1} \sin\left(\frac{1}{x}\right) \text{ exists finitely}$$

$$\Rightarrow n-1 > 0 \Rightarrow n > 1$$

If $n \le 1$, then $\lim_{x \to 0} x^{n-1} \sin\left(\frac{1}{x}\right)$ does not exist and hence f(x) is not differentiable at x = 0

Hence f(x) is continuous but not differentiable at x = 0 for $0 < n \le 1$ i.e. $n \in (0, 1]$

10 **(b)**

Clearly, f(x) is not differentiable at x = 3

Now,
$$\lim_{h \to 3^{-}} f(x) = \lim_{h \to 0} f(3 - h)$$

$$= \lim_{h \to 0} |3 - h - 3|$$

$$= 0$$

$$\lim_{h \to 3^+} f(x) = \lim_{h \to 0} f(3+h)$$

$$= \lim_{h \to 0} |3 + h - 3| = 0$$

and
$$f(3) = |3 - 3| = 0$$

$$f(x)$$
 is continuous at $x = 3$

11 **(a)**

It can easily be seen from the graphs of f(x) and that both are continuous at x = 0 Also, f(x) is not differentiable at x = 0 whereas g(x) is differentiable at x = 0

12 **(c)**

We have.

$$\lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} f(0 - h) = \lim_{h \to 0} \frac{-\sin(a+1)h - \sin h}{-h}$$

$$\Rightarrow \lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} f(0 - h) = \lim_{h \to 0} \left\{ \frac{\sin(a + 1)h}{h} + \frac{\sin h}{h} \right\}$$

$$\Rightarrow \lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} f(0 - h) = (a + 1) + 1 = a + 2$$

and,
$$\lim_{x \to 0^+} f(x) = \lim_{h \to 0} f(0+h)$$

$$\Rightarrow \lim_{x \to 0^+} f(x) = \lim_{h \to 0} \frac{\sqrt{h + bh^2} - \sqrt{h}}{b \ h^{3/2}}$$

$$\Rightarrow \lim_{x \to 0^+} f(x) = \lim_{h \to 0} \frac{h + bh^2 - h}{bh^{3/2} (\sqrt{h + bh^2} - \sqrt{h})} = \lim_{h \to 0} \frac{1}{\sqrt{1 + bh} + 1} = \frac{1}{2}$$

Since, f(x) is continuous at x = 0. Therefore,

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0)$$

$$\Rightarrow a + 2 = \frac{1}{2} = c \Rightarrow c = \frac{1}{2}, a = -\frac{3}{2} \text{ and } b \in R - \{0\}$$

13 **(c)**

For f(x) to be continuous at x = 0, we must have

$$\lim_{x \to 0} f(x) = f(0)$$

$$\Rightarrow \lim_{x \to 0} \frac{(9^x - 1)(4^x - 1)}{\sqrt{2} - \sqrt{2\cos^2 x/2}} = k$$

$$\Rightarrow \lim_{x \to 0} \frac{(9^x - 1)(4^x - 1)}{\sqrt{2} \cdot 2\sin^2 x/4} = k$$

$$\Rightarrow \lim_{x \to 0} \frac{16 \times \left(\frac{9^x - 1}{x}\right) \left(\frac{4^x - 1}{x}\right)}{2\sqrt{2} \left(\frac{\sin x/2}{x/4}\right)^2} = k$$

$$\Rightarrow \frac{16}{2\sqrt{2}}\log 9 \cdot \log 4 = k = 4\sqrt{2}\log 9 \cdot \log 4 = 16\sqrt{2}\log 3\log 2$$

14 **(b)**

Given,
$$f(x) = [\tan^2 x]$$

Now,
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} [\tan^2 x] = 0$$

And
$$f(0) = [\tan^2 0] = 0$$

Hence, f(x) is continuous at x = 0

15 **(b)**

Let,
$$f(x) = x$$

Which is continuous at x = 0

Also,
$$f(x + y) = f(x) + f(y)$$

$$\Rightarrow f(0+0) = f(0) + f(0)$$

$$= 0 + 0$$

$$\Rightarrow f(0) = 0$$

$$f(1+0) = f(1) + f(0)$$

$$\Rightarrow f(1) = 1 + 0$$

$$\Rightarrow f(1) = 1$$

As, it satisfies it.

Hence, f(x) is continous for every values of x

16 **(c)**

Here,
$$gof = \begin{cases} e^{\sin x}, & x \ge 0 \\ e^{1-\cos x}, & x \le 0 \end{cases}$$

$$\therefore LHD = \lim_{h \to 0} \frac{gof(0-h) - gof(h)}{-h}$$

$$= \lim_{h \to 0} \frac{e^{1-\cos h} - e^{1-\cos h}}{-h} = 0$$

RHD=
$$\lim_{h\to 0} \frac{gof(0+h)-gof(h)}{h}$$
$$e^{\sin h} - e^{\sin h}$$

$$= \lim_{h \to 0} \frac{e^{\sin h} - e^{\sin h}}{h} = 0$$

Since, RHD=LHD=0

$$\therefore (gof)'(0) = 0$$

$$f(x) \begin{cases} (x+1)^{2-\left(\frac{1}{x} + \frac{1}{x}\right)} = (x+1)^2, & x < 0 \\ 0, & x = 0 \\ (x+1)^{2-\left(\frac{1}{x} + \frac{1}{x}\right)} = (x+1)^{2-\frac{2}{x}}, & x > 0 \end{cases}$$

Clearly, f(x) is everywhere continuous except possibly at x = 0

At x = 0, we have

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x+1)^{2} = 1$$

and,
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0} (x+1)^{2-\frac{2}{x}} = \lim_{x \to 0} (x+1)^{-2/x}$$

$$\Rightarrow \lim_{x \to 0^{+}} f(x) = e^{\lim_{x \to 0^{-}} \frac{2}{x} \log(1+x)} = e^{-2}$$

Clearly,
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x)$$

So, f(x) is not continuous at x = 0

18

Since f(x) is continuous at x = 0. Therefore,

$$\lim_{x\to 0} f(x) = f(0)$$

$$\Rightarrow \lim_{x \to 0} f(x) = k$$

$$\Rightarrow \lim_{x \to 0} \frac{\log(1 + ax) - \log(1 - bx)}{x} = k$$

$$\Rightarrow a \lim_{x \to 0} \frac{\log(1 + ax)}{ax} - (-b) \lim_{x \to 0} \frac{\log(1 - bx)}{-bx} = k$$

$$\Rightarrow a + b = k$$

Since f(x) is continuous at x = 0

$$\div f(0) = \lim_{x \to 0} f(x)$$

$$\Rightarrow f(0) = \lim_{x \to 0} \frac{(27 - 2x)^{1/3} - 3}{9 - 3(243 + 5x)^{1/5}} \qquad \left[\text{Form } \frac{0}{0} \right]$$

$$\Rightarrow f(0) = \lim_{x \to 0} \frac{(27 - 2x)^{1/3} - 3}{9 - 3(243 + 5x)^{1/5}} \qquad \left[\text{Form} \frac{0}{0} \right]$$
$$\Rightarrow f(0) = \lim_{x \to 0} \frac{\frac{1}{3}(27 - 2x)^{-\frac{2}{3}}(-2)}{-\frac{3}{5}(243 + 5x)^{-\frac{4}{5}}(5)} = \left(-\frac{2}{3}\right) \left(-\frac{1}{3}\right) \frac{3^4}{3^2} = 2$$

$$\lim_{x \to 0} \frac{e^{2x} - 1 - 2x}{x(e^{2x} - 1)}$$

$$= \lim_{x \to 0} \frac{2e^{2x} - 2}{(e^{2x} - 1) + 2xe^{2x}} \quad [\text{using L 'Hospital rule}]$$

$$= \lim_{x \to 0} \frac{4e^{2x}}{4e^{2x} + 4xe^{2x}} = 1 \quad [\text{using L 'Hospital's rule}]$$
Since, $f(x)$ is continuous at $x = 0$, then
$$\lim_{x \to 0} f(x) = f(0) \quad \Rightarrow \quad 1 = f(0)$$

	ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10	
A.	С	A	A	С	В	В	С	С	A	В	
Q.	11	12	13	14	15	16	17	18	19	20	
Α.	A	С	С	В	В	С	В	В	С	D	

SESSION: 2025-26

CLASS: XIIth

DATE:

SOLUTIONS

SUBJECT: MATHS

DPP NO.: 10

Topic:- CONTINUITY AND DIFFERENTIABILITY

1 **(b)**

If a function f(x) is continuous at x = a, then it may or may not be differentiable at x = a. Option (b) is correct

2 **(c)**

Let
$$f(x) = |x - 1| + |x - 3|$$

$$= \begin{cases} x - 1 & + x - 3 & , x \ge 3 \\ x - 1 + 3 - x & , & 1 \le x < 3 \\ 1 - x & + 3 - x & , & x \le 1 \end{cases}$$

$$= \begin{cases} 2x - 4, x \ge 3 \\ 2, 1 \le x < 3 \\ 4 - 2x, x \le 1 \end{cases}$$

At x = 2, function is

$$f(x) = 2$$

$$\Rightarrow f'(x) = 0$$

$$3 \qquad (d)$$

We have,

 $f(x) = \begin{cases} (x+1) e^{-\left(\frac{1}{x} + \frac{1}{x}\right)} = (x+1), & x < 0\\ (x+1) e^{-\left(\frac{1}{x} + \frac{1}{x}\right)} = (x+1)e^{-2/x}, & x > 0 \end{cases}$

Clearly, f(x) is continuous for all $x \neq 0$

So, we will check its continuity at x = 0

We have,

(LHL at
$$x = 0$$
) = $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} (x + 1) = 1$

$$(RHL at x = 0) = \lim_{x \to 0^+} f(x) = \lim_{x \to 0} (x+1) e^{-2/x} = \lim_{x \to 0} \frac{x+1}{e^{2/x}} = 0$$

$$\therefore \lim_{x \to 0^-} f(x) \neq \lim_{x \to 0^+ f(x)}$$

So, f(x) is not continuous at x = 0

Also, f(x) assumes all values from f(-2) to f(2) and f(2) = 3/e is the maximum value of f(x)

4 **(c)**

Since, it is a polynomial function, so it is continuous for every value of x except at x=2 LHL= $\lim_{x\to 2^-} x-1$

$$= \lim_{h \to 0} 2 - h - 1 = 1$$

RHL=
$$\lim_{x \to 2^{+}} 2x - 3 = \lim_{h \to 0} 2(2+h) - 3 = 1$$

And
$$f(2) = 2(2) - 3 = 1$$

$$\therefore$$
 LHL+RHL= $f(2)$

Hence, f(x) is continuous for all real values of x

Continuity at x = 0

LHL=
$$\lim_{x\to 0^{-}} \frac{\tan x}{x} = \lim_{h\to 0} \frac{-\tan h}{-h} = 1$$

RHL= $\lim_{x\to 0^{+}} \frac{\tan x}{x} = \lim_{h\to 0} \frac{\tan h}{h} = 1$

RHL=
$$\lim_{x\to 0^+} \frac{\tan x}{x} = \lim_{h\to 0} \frac{\tan h}{h} = 1$$

$$\therefore$$
 LHL=RHL= $f(0) = 1$, it is continuous

Differentiability at x = 0

LHD=
$$\lim_{h\to 0} \frac{f(0-h)-f(0)}{-h} = \lim_{h\to 0} \frac{\frac{\tan(-h)}{-h}-1}{-h}$$

$$= \lim_{h \to 0} \frac{+\frac{h^2}{3} + \frac{2h^4}{15} + \dots}{-h} = 0$$

RHD=
$$\lim_{h\to 0} \frac{f(0+h)-f(0)}{h} = \lim_{h\to 0} \frac{\frac{\tan h}{h}}{h}$$

RHD=
$$\lim_{h\to 0} \frac{f(0+h)-f(0)}{h} = \lim_{h\to 0} \frac{\frac{\tan h}{h}}{h}$$

= $\lim_{h\to 0} \frac{\frac{h^2}{3} + \frac{2h^4}{15} + \dots}{-h} = 0$

Hence, it is differentiable.

6 (b)

We have.

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} (x - 1) = 0$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1} (x^3 - 1) = 0. \text{ Also, } f(1) = 1 - 1 = 0$$

So,
$$f(x)$$
 is continuous at $x = 1$

Clearly,
$$(f'(1)) = 3$$
 and $Rf'(1) = 1$

Therefore, f(x) is not differentiable at x = 1

We have,

$$f(x) = \begin{cases} \frac{x^2 - x}{x^2 - x} = 1, & \text{if } x < 0 \text{ or } x > 1 \\ -\frac{(x^2 - x)}{x^2 - x} = -1, & \text{if } 0 < x < 1 \\ 1, & \text{if } x = 0 \\ -1, & \text{if } x = 1 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} 1, & \text{if } x \le 0 \text{ or } x > 1 \\ -1, & \text{if } 0 < x \le 1 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} 1, & \text{if } x \le 0 \text{ or } x > 1 \\ -1, & \text{if } 0 < x < 1 \end{cases}$$

Now,

 $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} 1 = 1 \text{ and, } \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} -1 = -1$

Clearly, $\lim_{x\to 0^-} f(x) \neq \lim_{x\to 0^+} f(x)$

So, f(x) is not continuous at x = 0. It can be easily seen that it is not continuous at x = 1

8

We have,

$$f(x) = |x - 1| + |x - 3|$$

$$\Rightarrow f(x) = \begin{cases} -(x-1) - (x-3), & x < 1\\ (x-1) - (x-3), & 1 \le x < 3\\ (x-1) + (x-3), & x \ge 3 \end{cases}$$
$$\Rightarrow f(x) = \begin{cases} -2x + 4, & x < 1\\ 2, & 1 \le x < 3\\ 2x - 4, & x \ge 3 \end{cases}$$

Since, f(x) = 2 for $1 \le x < 3$. Therefore f'(x) = 0 for all $x \in (1,3)$

Hence, f'(x) = 0 at x = 2

We have,

$$Lf'(0) = 0$$
 and $Rf'(0) = 0 + \cos 0^{\circ} = 1$

$$\therefore Lf'(0) \neq Rf'(0)$$

Hence, f'(x) does not exist at x = 0

10 (c)

Given,
$$g(x) = \frac{(x-1)^n}{\log \cos^m(x-1)}$$
; $0 < x < 2$, $m \ne 0$, n are integers and $|x-1| = \begin{cases} x-1; & x \ge 1 \\ 1-x; & x < 1 \end{cases}$

The left hand derivative of |x - 1| at x = 1 is p = -1

Also,
$$\lim_{x \to 1^+} g(x) = p = -1$$

$$(1+h-1)^n$$
 Learning Without L

$$\Rightarrow \lim_{h \to 0} \frac{(1+h-1)^n}{\log \cos^m (1+h-1)} = -1$$

$$\Rightarrow \lim_{h \to 0} \frac{h^n}{m \log \cos h} = -1$$

$$\Rightarrow \lim_{h \to 0} \frac{h^n}{m \log \cos h} = -1$$

$$\Rightarrow \lim_{h \to 0} \frac{n \cdot h^{n-1}}{m \cdot \frac{1}{\cos h} (-\sin h)} = -1$$

[using L 'Hospital's rule]

$$\Rightarrow \left(\frac{n}{m}\right) \lim_{h \to 0} \frac{h^{n-2}}{\left(\frac{\tan h}{h}\right)} = 1$$

$$\Rightarrow n = 2 \text{ and } \frac{n}{m} = 1$$

$$\Rightarrow m = n = 2$$

Given,
$$f(x) = \frac{2x^2+7}{(x^2-1)(x+3)}$$

Since, at
$$x = 1, -1, -3, f(x) = \infty$$

Hence, function is discontinuous

LHL=
$$\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} [1 - (1 - h)^{2}] = 0$$

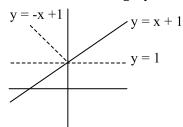
RHL=
$$\lim_{x \to 1^+} f(x) = \lim_{h \to 0} \{1 + (1+h)^2\} = 2$$

Also,
$$f(1) = 0$$

$$\Rightarrow$$
 RHL \neq LHL = $f(1)$

Hence, f(x) is not continuous at x = 1

It is clear from the graph that minimum f(x) is



$$f(x) = x + 1, \quad \forall x \in R$$

Hence, it is a straight line, so it is differentiable everywhere

15 (c)

Since, f(x) is continuous at $x = \frac{\pi}{2}$

$$\lim_{x \to \frac{\pi^{-1}}{2}} (mx + 1) = \lim_{x \to \frac{\pi^{+}}{2}} (\sin x + n)$$

$$\Rightarrow m\frac{\pi}{2} + 1 = \sin\frac{\pi}{2} + n$$

$$\Rightarrow \frac{m\pi}{2} = n$$

$$\Rightarrow \frac{m\pi}{2} = n$$

16

This function is continuous at x = 0, then

$$\lim_{x \to 0} \frac{\log_{e}(1 + x^{2} \tan x)}{\sin x^{3}} = f(0)$$

$$\Rightarrow \lim_{x \to 0} \frac{\log_{e} \left\{ 1 + x^{2} \left(x + \frac{x^{3}}{3} + \dots \right) \right\}}{x^{3} - \frac{x^{9}}{3!} + \frac{x^{15}}{5!} - \dots} = f(0)$$

$$\Rightarrow \lim_{x \to 0} \frac{\log_{e}(1 + x^{3})}{x^{3} - \frac{x^{9}}{3!} + \frac{x^{15}}{5!} - \dots} = f(0)$$

[neglecting higher power of x in $x^2 \tan x$]

$$\Rightarrow \lim_{x \to 0} \frac{x^3 - \frac{x^6}{2} + \frac{x^9}{3} - \dots}{x^3 + \frac{x^9}{3!} + \frac{x^{15}}{5!} - \dots} = f(0)$$

$$\Rightarrow$$
 1 = $f(0)$

17 (a)

Given, f(x) is continuous at x = 0

: Limit must exist

ie,
$$\lim_{x \to 0} x^p \sin \frac{1}{x} = (0)^p \sin \infty = 0$$
, when, $0 ...(i)$

Now, RHD=
$$\lim_{h\to 0} \frac{h^p \sin\frac{1}{h} - 0}{h} = \lim_{h\to 0} h^{p-1} \sin\frac{1}{h}$$

LHD=
$$\lim_{h\to 0} \frac{(-h)^p \sin\left(-\frac{1}{h}\right) - 0}{-h}$$

$$= \lim_{h \to 0} (-1)^p h^{p-1} \sin \frac{1}{h}$$

Since, f(x) is not differentiable at x = 0

$$p \le 1$$
 ...(ii)

From Eqs.(i) and (iii), 0

18 (a)

We have,

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin x^2}{x} = \lim_{x \to 0} \left(\frac{\sin x^2}{x^2} \right) x = 1 \times 0 = 0 = f(0)$$

So, f(x) is continuous at x = 0. f(x) is also derivable at x = 0, because

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\sin x^2}{x} = \lim_{x \to 0} \frac{\sin x^2}{x^2} = 1 \text{ exists finitely}$$

A function f on R into itself is continuous at a point a in R, iff for each $\epsilon > 0$ there exist $\delta > 0$, such

$$|f(x) - f(a)| < \in \Rightarrow |x - a| < \delta$$

We have,

$$f(x) = x - |x - x^2|, \qquad -1 \le x \le 1$$

$$\Rightarrow f(x) = \begin{cases} x + x - x^2, & -1 \le x < 0 \\ x - (x - x^2), & 0 \le x \le 1 \end{cases}$$

we have,

$$f(x) = x - |x - x^{2}|, \quad -1 \le x \le 1$$

$$\Rightarrow f(x) = \begin{cases} x + x - x^{2}, & -1 \le x < 0 \\ x - (x - x^{2}), & 0 \le x \le 1 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} 2x - x^{2}, & -1 \le x < 0 \\ x^{2}, & 0 \le x \le 1 \end{cases}$$

Clearly, f(x) is continuous at x = 0

$$\lim_{x \to -1^+} f(x) = \lim_{x \to -1} 2x - x^2 = -2 - 1 = -3 = f(-1)$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x^{2} = 1 = f(1)$$

So, f(x) is right continuous at x = -1 and left continuous at x = 1

Hence, f(x) is continuous on [-1, 1]

	ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10	
A.	В	С	D	С	С	В	D	В	D	С	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	C	C	A	C	C	A	A	A	A	A	
				SI	R'S	10					

